簡易檢索 / 詳目顯示

研究生: 蘇建興
Chien-Hsing Su
論文名稱: 非線性系統效能提昇之智慧型方法
Performance Improvement for Nonlinear Systems Using Intelligent Method
指導教授: 練光祐
Kuang-Yow Lian
方文賢
Wen-Hsien Fang
口試委員: 傅立成
none
陳永耀
none
周至宏
none
蘇順豐
none
賴坤財
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 116
中文關鍵詞: 虛擬預期變數線性矩陣不等式T-S模糊模型類神經網路
外文關鍵詞: Virtual Desired Variables, T-S Fuzzy Model, Linear Matrix Linequalities, Neural Networks
相關次數: 點閱:264下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討如何將非線性系統精確表示成T-S模糊模型,並使用智慧型方法用以達成各種常見的控制目標,其間兼顧系統的穩定性、指數收斂性質、快速暫態響應、以及強健性等諸多性質的考量。首先,提出系統化方法,將非線性系統精確地表示成T-S模糊模型。利用這種方法,少量模糊的規則就足以在一定區域內完整無誤地表示此非線性系統。本論文中同時說明了,此過程中可將系統之不確定性全由歸屬函數加以刻畫描述,而子系統矩陣依然能保持恆定且已知。一個嶄新的控制想法於焉產生: 利用已知的系統矩陣用以求解滿足系統穩定性條件的固定回授增益;另一方面,以類神經網路調整模糊控制器的等級函數以獲取較快速的暫態響應。此處等級函數,乃源於控制規則的歸屬函數,是利用倒傳遞網路學習取得最佳的數值。至於穩定性條件則使用Lyapunov法求得,可保證閉迴路系統穩定無虞,此充分條件可轉換成線性矩陣不等式之型式,輔以強有力的數值工具獲得控制增益。
    此論文另一重點乃介紹所謂虛擬預期變數綜合法來完成許多不同形式的T-S模糊系統控制目標之實現。控制目標的範圍從混沌控制 — (一)調節;(二)非線性模型追蹤;(三)輸出調節;(四)輸出跟蹤,到反控制問題 — (五) 混沌化,而目的在於達到零狀態誤差。這裡我們到很多物理系統的模糊集合的歸屬函數是滿足類Lipschitz的特性。實際上的虛擬預期變數綜合法的控制增益,是透過一組線性矩陣不等式求解所得到的,這線性矩陣不等式的形式與前述穩定問題的線性矩陣不等式形式相同。而且,為了提昇系統暫態之效能,結合虛擬預期變數綜合法與類神經網路來調整控制器的等級函數,做為最終的解決方案。
    針對模糊系統暫態性能提昇之智慧型控制器設計方法,適合應用在許許多多的非線性系統。在數值模擬方面,我們使用幾個著名連續時間與離散時間的非線性系統為例,其中,結合類神經網路方法的模糊控制器,以球與樑的系統和拖車系統做為其應用的例子;而結合類神經網路方法的虛擬預期變數綜合控制器,則以Chua的電路和H'enon映射為應用的例子。


    This dissertation centers on the issue of representing nonlinear systems precisely as Takagi-Sugeno (T-S) fuzzy models and making use of intelligent method, so that various control objectives can be achieved. Meanwhile, system stability, exponential convergence property, improvement of transient response, and robustness are all taken into consideration. First, a method is given to systematically represent a nonlinear system exactly as a T-S fuzzy model. By the method, not only few fuzzy rules are enough to represent the nonlinear system precisely. Besides, the derived fuzzy model gives zero modeling errors in the universe of discourse where the fuzzy sets are defined. As the overall inferred output is presented, the method mentioned above is illustrated to put all the system uncertainty into the membership functions, whereas the local system matrices are kept constant and known. Thereby, a brand new concept about control design is acquired. We can make use of the known existing system matrices to obtain the controller gains to satisfy the conditions of system stability. Moreover, by using neural networks to tune control grade functions, a new control scheme is proposed to improve the system performance of the transient response of fuzzy systems. The grade functions, resulting from the membership functions of the control rules, are the optimization achieved by a back-propagation network (BPN). Using Lyapunov's direct method, the stability analysis is performed well on the overall closed-loop system. It derives the sufficient conditions which, as a result, are formulated into linear matrix inequalities (LMIs). Next, using powerful numerical toolboxes, the linear matrix inequalities are solved and controller gains are obtained.

    With regards to another emphasis in the dissertation, the new concepts, virtual-desired-variables synthesis and generalized kinematic constraints, are introduced to benefit the various control objectives design. The control objectives range from the chaotic control - i) regulation; ii) nonlinear model following; iii) output regulation; and iv) output tracking, to the anticontrol issue - v) chaotification. Meanwhile, zero tracking error is concluded. Here we focus on a common feature held by many physical systems where their membership functions of fuzzy sets satisfy a Lipschitz-like property. The control gains of virtual-desired-variables synthesis are determined by solving a set of LMIs, the same type of LMIs for stabilization problem. Moreover, to improve the system's performance, a new scheme combining virtual-desired-variables synthesis and tuning algorithms by neural networks is proposed to be the ultimate solution.

    The proposed intelligent methods can achieve high performance for both continuous and discrete-time fuzzy systems. They can be applied to many nonlinear systems. Here, the fuzzy controller using neural networks method is applied to the numerical simulations of several well-known nonlinear systems, such as ball-and-beam system and truck-trailer system. Besides, virtual-desired-variables synthesis using neural networks method is applied to the numerical simulations of Chua's circuit and H'enon map.

    Abstract in Chinese I Abstract in English II Acknowledgement in Chinese IV Table of Contents V List of Figures VII List of Tables IX 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 3 1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Contribution . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Organization of Dissertation . . . . . . . . . . .. . . . . . . . . . . 8 2 Mathematical Preliminaries 10 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 T-S Fuzzy Modeling with Uncertain Membership Functions . . . . . . . .. 12 2.3 Parallel Distributed Compensation and Basic Stability Analysis . . .. . 22 2.4 Formulation of Linear Matrix Inequalities . . . . . . . . . . . . . . . 25 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 System Control using a New Neuro-Fuzzy Approach 30 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 T-S Fuzzy Model and Stability . . . . . . . . . . . . . . . . . . . . . 32 3.3 Updating Grade Functions via Neural Networks . . . . . . . . . . . . . . 37 3.4 Performance Improvement . . . . . . . . . . . . . . . . . .. . . . . . . 41 3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5.1 Application on a Ball-and-Beam System . . . . . . . . . . . . . . . . 42 3.5.2 Application on a Truck-Trailer System . . . . . . . . . . . . . . . 46 3.6 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.6.1 Numerical Simulation for the Ball and Beam System . . . . . . . . . . 51 3.6.2 Numerical Simulation for the Truck-Trailer System . . . . . . . . . . 55 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 Achieving Various Control Objectives via Virtual-Desired-Variable synthesis 60 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 T-S Fuzzy Model and Virtual Desired Variables . . . . . . . . . . . . . 63 4.3 Various Control Objectives . . . . . . . . . . . . . . . . . . . . . . 68 4.4 Stability Analysis and Feedback Gains . . . . . . . . . . . . . . . . . 76 4.5 Updating Grade Functions via Neural Networks . . . . . . . . . . . . . . 81 4.6 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.6.1 Numerical Simulation for the Chua’s circuit . . . . . . . . . . . . . 83 4.6.2 Numerical Simulation for the H’enon map . . . . . . . . . . . . . . 86 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5 Conclusions and Future Works 97 Appendix A The T-S Fuzzy Model of Example 2.1 111 Appendix B The Membership Functions of Example 2.1 114 Biography 115 Publication List 116

    [1] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Upper Saddle River, NJ: Prentice-Hall, 2002.
    [2] P. J. Antsaklis and K. M. Passino, An Introduction to Intelligent and Autonomous Control. Boston: Kluwer Academic, 1993.
    [3] L. Yu and Y. Q. Zhang; “ Evolutionary fuzzy neural networks for hybrid financial prediction,” IEEE Trans. Syst., Man, Cybern., C, vol. 35, no. 2, pp.244–249, 2005.
    [4] S. Mitra, S. K. Pal, and P. Mitra, “Data mining in soft computing framework: a survey,” IEEE Trans. Neural Networks, vol. 13, no. 1, pp. 3–14, 2002.
    [5] A. Blanco, M. Delgado, and M. C. Pegalajar, “A real-coded genetic algorithm for training recurrent neural networks,” IEEE Trans. Neural Networks , vol. 14, pp.93–105, 2001.
    [6] J. Zhang, “Modeling and optimal control of batch processes using recurrent neuro-fuzzy networks,” IEEE Trans. Fuzzy Syst., vol. 13, no. 4, pp.417–427, 2005.
    [7] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford: Clarendon Press, 1995.
    [8] E. Cant´u-Paz and C. Kamath, “An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems,” IEEE Trans. Syst., Man, Cybern., B, vol. 35, no. 5, pp. 915–927, 2005.
    [9] C. H. Lee and C. C. Teng, “Identification and control of dynamic systems using recurrent fuzzy neural networks,” IEEE Trans. Fuzzy Syst., vol. 8, no. 4, pp. 349–366, 2000.
    [10] C. Y. Lee and J. J. Lee, “ Adaptive control for uncertain nonlinear systems based on multiple neural networks,” IEEE Trans. Syst., Man, Cybern., B, vol. 34, no. 1, pp. 325–333, 2004.
    [11] D. E. Rumelhart and J. L. Mclelland, Eds., Parallel and Distributed Processing (PDP): Explorations in the Microstructure of the Cognitron, Cambridge, MA: MIT Press, 1986.
    [12] X. Yu, M. O. Efe, and O. Kaynak, “A general backpropagation algorithm for feedforward neural networks learning,” IEEE Trans. Neural Networks, vol. 13, no. 1, pp. 251–254, 2002.
    [13] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.
    [14] E. H. Mamdani, “Application of fuzzy algorithms for control of simple dynamic plant,” Proc. IEE, pp. 1585–1588, 1974.
    [15] E. Mamdani, “Advances in the linguistic synthesis of fuzzy controllers, Int. J. ManVMachine Studies, vol. 8, pp. 669–678, 1976.
    [16] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol. 15, no. 1, pp. 116–132, 1985.
    [17] K. Tanaka, M. Iwasaki, and H. O. Wang, “Switching Control of an R/C Hovercraft: Stabilization and Smooth Switching,” IEEE Trans. SMC PartB, vol. 31, pp. 853-863, 2001
    [18] P. Bergsten , R. Palm, and D. Driankov, “Observers for Takagi-Sugeno fuzzy systems,” IEEE Trans. SMC Part B, vol. 32, pp. 114 -121, 2002
    [19] K. Y. Lian., T. S. Chiang, C. S. Chiu, and P. Liu, “Synthesis of fuzzy modelbased designs to synchronization and secure communications for chaotic systems,”IEEE Trans. Syst., Man, Cybern. B, vol. 31, pp. 66-83, 2001.
    [20] K. Tanaka and C. S. Wang, Fuzzy Control Systems Analysis and Design: A linear Matrix Inequality Approach, New York: Wiley, 2001.
    [21] M. Sugeno and G. T. Kang, “Fuzzy modeling and control of multilayer incinerator,”Fuzzy Sets Syst., no. 18, pp. 329–346, 1986.
    [22] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system and control theory. Philadelphia, PA: SIAM, 1994.
    [23] Y. Nesterov and A. Nemirovsky, Interior-point polynomial methods in convex programming. Philadelphia: SIAM, 1994.
    [24] Y. Becerikli, Y. Oysal, and A. F. Konar, “Trajectory priming with dynamic fuzzy networks in nonlinear optimal control,” IEEE Trans. Neural Networks, vol. 15, pp. 383–394, 2004.
    [25] F. B. Duh and C. T. Lin, “Tracking a maneuvering target using neural fuzzy network,” , vol. 34, no. 1, pp. 16–33, 2004
    [26] Y. G. Leu, T. T. Lee, and W. Y. Wang, “On-Line Tuning of FuzzyVNeural Network for Adaptive Control of Nonlinear Dynamical Systems,” IEEE Trans. Syst., Man, Cybern., B, vol. 27, no. 6, pp. 740-747, 1997.
    [27] W. Y. Wang, C. Y. Cheng, and Y. G. Leu, “An online GA-based outputfeedback direct adaptive fuzzy-neural controller for uncertain nonlinear systems,”IEEE Trans. Syst., Man, Cybern., B, vol. 34, no. 1, pp. 334-345, 2004.
    [28] W. Y. Wang, T. T. Lee, C. L. Liu, and C. H. Wang, “Function approximation using fuzzy neural networks with robust learning algorithm,” IEEE Trans. Syst., Man, Cybern., B, vol. 27, no. 4, pp. 740-747, 1997.
    [29] Y. Q. Zhang and A. Kandel, “Compensatory neurofuzzy nystems with fast learning algorithms,” IEEE Trans. Neural Networks,, vol. 9, no. 1, pp. 83-105, 1998.
    [30] B. J. Park, W. Pedrycz, and S. K. Oh , ”Fuzzy polynomial neural networks: hybrid architectures of fuzzy modeling,” IEEE Trans. Fuzzy Syst., vol. 10, no. 5, pp. 607-621, 2002.
    [31] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,”Fuzzy Sets Syst., vol. 45, pp. 135–156, 1992.
    [32] K. Tanaka, T. Ikeda, and H.O. Wang, “Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H1 control theory, and linear matrix inequalities ,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 1–13, 1996.
    [33] H. O. Wang, K. Tanaka, and M. Griffin, “An approach to fuzzy control of nonliner systems: stability and design issues,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 14–23, 1996.
    [34] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observer: Relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Syst., vol. 6, pp. 250-265, 1998.
    [35] F. Cuesta, F. Gordillo, J. Aracil, and A. Ollero, ”Stability analysis of nonlinear multivariable Takagi-Sugeno fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 7, pp. 508–519, Oct. 1999.
    [36] M. C. M. Teixeira and S. H. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Trans. Fuzzy Syst., vol. 7, pp. 133–142, Apr. 1999.
    [37] O. Begovich, E. N. Sanchez, and M. Maldonado, “T-S scheme for trajectory tracking of an underactuated robot,” in Proc. IEEE Fuzzy Conf., San Antonio, TX, May 2000, pp. 798–803
    [38] K. Tanaka, T. Hori, and H. O. Wang, “A multiple Lyapunov function approach to stabilization of fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 11, no. 4, pp. 582-589, 2003.
    [39] H. J. Lee, H. Kim, Y. H. Joo, W. Chang, and J. B. Park, “A new Intelligent digital redesign for T-S Fuzzy systems: global approach,” IEEE Trans. Fuzzy Syst., vol. 12, no. 2, pp. 274-284, 2004
    [40] C. H. Wang, T. C. Lin, T. T. Lee, and H. L. Liu, “Adaptive Hybrid Intelligent Control for Uncertain Nonlinear Dynamical Systems,” IEEE Trans. Syst., Man, Cybern., B, vol. 32, pp. 583–597, 2002.
    [41] T. Taniguchi, K. Tanaka, and H. O. Wang, “Fuzzy descriptor systems and nonlinear model following control ,” IEEE Trans. Fuzzy Syst., vol. 8, pp.442– 452, 2000.
    [42] S. J. Wu and C. T. Lin, “Global optimal fuzzy tracker design based on local concept approach,” IEEE Trans. Fuzzy Syst., vol. 10, pp.128–143, 2002.
    [43] F. Zheng, Q. G. Wang, and T. H. Lee, “Output tracking control of MIMO fuzzy nonlinear systems using variable structure control approach ,” IEEE Trans. Fuzzy Syst., vol. 10, pp.686–697, 2002.
    [44] C. S. Chiu, “Globally Guaranteed Robustness Adaptive Fuzzy Control with Application on Highly Uncertain Robot Manipulators,” IEICE Trans. Fundamentals, vol. E88-A, no 4, pp. 1007–1014, 2005.
    [45] Z. L. Liu and J. Svoboda, ”A new control scheme for nonlinear systems with
    disturbances,” IEEE Trans. Control Syst. Technol., vol. 14, no. 1, pp. 176–181, 2006.
    [46] B. Castillo-Toledo and J. A. Meda-Campa˜na , “The fuzzy discrete-time robust regulation problem: an LMI approach,” IEEE Trans. Fuzzy Syst., vol. 12, pp. 360– 367, 2004.
    [47] X. J. Ma and Z. Q. Sun, “Output tracking and regulation of nonlinear system based on Takagi-Sugeno fuzzy model,” IIEEE Trans. Syst., Man, Cybern., B vol. 30, no. 1, pp. 47–59, 2000
    [48] O. Begovich, E. N. Sanchez, and M. Maldonado, ”Takagi-Sugeno fuzzy scheme for real-time trajectory tracking of an underactuated robot ,” IEEE Trans.
    Control Syst. Technol., vol. 10, no. 1, pp. 14–20, 2002
    [49] L. O. Chua, M Komuro, and T. Matsumoto, “The double scroll family, part I: Rigorous proof of chaos,” IEEE Trans. Circ. Syst., vol. 33, pp.1072–1096, 1986.
    [50] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett, vol. 64, pp. 1196–1199, 1990.
    [51] G. Chen G and X. Dong, From chaos to order: methodologies, perspectives and applications. Singapore: World Scientific; 1998.
    [52] S. Mascolo and G. Grassi, “Controlling chaotic dynamics using backstepping design with application to the Lorenz system and chua’s circuit,” Int. J. Bifurcation and Chaos, vol. 9, pp. 1425–1434, 1999.
    [53] L. Udawatta, K. Watanabe, K. Kiguchi, and K. Izumi, “ Fuzzy-chaos hybrid controlling of nonlinear systems,” IEEE Trans. Fuzzy Syst vol. 10, pp.401-411, 2002.
    [54] ¨O Morg¨ul, “A model-based scheme for anticontrol of some chaotic systems,”Int. J. Bifurcation and Chaos, vol. 13, pp.3449–3457, 2003.
    [55] G. P. Jiang, G. Chen, and W.K.S. Tang, “ Stabilizing unstable equilibria of chaotic systems from a state observer approach,” IEEE Trans. Circ. Syst. II vol. 51, pp.281–288, 2004.
    [56] ¨ O. Morg¨ul, “A model-based scheme for anticontrol of some discrete-time chaotic systems,” Int. J. Bifurcation and Chaos, vol. 14, pp.2943–2954, 2004.
    [57] K. Starkov and G. Chen, “Chaotification of polynomial continuous-time systems and rational normal forms,” Chaos, Solitons and Fractals, vol. 22, pp.849–856, 2004.
    [58] X. Liu and H. Zhang, “Stability analysis of uncertain fuzzy large-scale system,”Chaos, Solitons and Fractals, vol. 25, pp.1107–1122, 2005.
    [59] G. P. Jiang and W. X. Zheng, “A simple method of chaos control for a class of chaotic discrete-time systems,” Chaos, Solitons and Fractals, vol. 23, pp.843–849, 2005.
    [60] J. H. Park, “Controlling chaotic systems via nonlinear feedback control,” Chaos, Solitons and Fractals, vol. 23, pp.1049–1054, 2005.
    [61] J. Zhu and Y. P. Tian, “Stabilizing periodic solutions of nonlinear systems and applications in chaos control,” IEEE Trans. Circ. Syst. II, vol. 52, pp.870–74, 2005.
    [62] H. O. Wang, K. Tanaka, and T. Ikeda, “Fuzzy modeling and control of chaotic systems, Proc. IEEE Int. Symp. Circuits and Systems, vol. 3, pp. 209–212, 1996.
    [63] K. Tanaka, T. Ikeda, and H. O. Wang, “A unified approach to controlling chaos via an LMI-based fuzzy control system design,” IEEE Trans. Circuits Syst. I, vol. 45, no. 10, pp. 1021–1040, 1998.
    [64] K. Y. Lian, P. Liu, T. C. Wu, and W.C. Lin, “Chaotic control using fuzzy model-based methods,” Int. J. Bifurcation and Chaos, vol. 12, pp.1827–1841, 2002.
    [65] Z. Li, J. B. Park, and Y. H. Joo, “Chaotifying continuous-time TS fuzzy systems via discretization,” IEEE Trans. Circ. Syst. I, vol. 48, no. 10, pp. 1237–1243, 2001.
    [66] Z. Li, J. B. Park, Y. H. Joo, Y. H. Choi, and G. Chen , “Anticontrol of chaos for discrete TS fuzzy systems,” IEEE Trans. Circ. Syst. I, vol. 49, no. 2, pp. 249-253, 2002.
    [67] H. Ying, “General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators,” IEEE Trans. Fuzzy Syst., vol. 6, no. 4, pp. 582–587, 1998.
    [68] Q. Gan and C. J. Harris, “Fuzzy local linearization and local basis function expansion in nonlinear system modeling,” IEEE Trans. Syst., Man, Cybern. B, vol. 29, pp. 559-565, Aug. 1999.
    [69] L. X.Wang and J. M. Mendel, “Fuzzy basis functions, universal approximation, and orthogonal least-squares learning,” IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 807–814, 1992.
    [70] K. Y. Lian, C. S. Chiu, T. S. Chiang, and P. Liu, “LMI-based fuzzy chaotic synchronization and communications,” IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 539–553, 2001
    [71] W. Hu, D. Xie, T. Tan, and S. Maybank, “Learning activity patterns using fuzzy self-organizing neural network,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 3, pp. 1618–1626, 2004.
    [72] K. Z. Mao, “ RBF neural network center selection based on Fisher ratio class separability measure,” IEEE Trans. Neural Networks , vol. 13, no. 5, pp. 1211–1217, 2002.
    [73] H. L. Tsai and S. J. Lee, “Entropy-based generation of supervised neural networks for classification of structured patterns,” IEEE Trans. Neural Networks, vol. 15, no. 2, pp. :283–297, 2004.
    [74] M. Brown and C. Harris, Neural Fuzzy Adaptive Modeling and Control, Englewood Cliffs, NJ: Prentice-Hall, 1994.
    [75] M. M. Gupta and N. K. Sinha, Intelligent Control Systems, New York: IEEE Press, 1996.
    [76] M. M. Polycarpou, ”Stable adaptive neural control scheme for nonlinear systems,” IEEE Trans. Autom. Control, vol. 41, no. 3, pp. 447–451, 1996.
    [77] S. N. Huang, K. K. Tan, and T. H. Lee, “ Nonlinear adaptive control of interconnected systems using neural networks,” IEEE Trans. Neural Networks , vol. 17, no. 1, pp. 243–246, 2006.
    [78] C. T. Lin and H. O. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems, Upper Saddle River, NJ: Prentice Hall, 1996.
    [79] C. T. Lin and Y. C. Lu, “A neural fuzzy system with linguistic teaching signals,”IEEE Trans. Fuzzy Syst., vol. 3, no. 2, pp. 169–189, 1995.
    [80] Zhang J., “Modeling and Optimal Control of Batch Processes Using Recurrent Neuro-Fuzzy Networks,” IEEE Trans. Fuzzy Syst., vol. 13, no. 4, pp. 417–427, 2005.
    [81] K. Tanaka and M. Sano, “A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer,” IEEE Trans. Fuzzy Syst., vol. 2, no. 2, pp. 119–134, 1994.
    [82] K. Tanaka and T. Kosaki, “Design of a stable fuzzy controller for an articulated vehicle,” IEEE Trans. Syst., Man, Cybern. B, vol. 27, no. 3, pp. 552–558, 1997.
    [83] G. Chen and X. Dong, “On feedback control of chaotic continuous-time systems,”IEEE Trans. Circ. Syst. I, vol. 40, pp. 591–601, 1993.
    [84] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett., vol. 64, no. 8, pp. 821–824, 1990.
    [85] K. Y. Lian, L. Piu, T. S. Chiang, and C. S. Chiu. “Adaptive Synchronization Design for Chaotic Systems via a Scalar Driving Signal,” IEEE Trans. Circ. Syst. I, vol49, pp. 17–27, 2002.
    [86] C. C. Wu, Graph coloring via synchronization of coupled oscillators. IBM Research Report, RC 20965, 1997.
    [87] O. M. Aamo and M. Krstic, Flow Control by Feedback: Stabilization and Mixing. New York: Springer; 2003.
    [88] H. J. Lee, J. B. Park, and G. Chen, “Robust fuzzy control of nonlinear systems with parametric uncertainties,” IEEE Fuzzy Syst., vol. 9, pp. 369–379, 2001.
    [89] C. S. Tseng, B. S. Chen, and H. J. Uang, “Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model,” IEEE Trans. Fuzzy Syst., vol. 9, pp.381–392, 2001.
    [90] C. S. Tseng and B. S. Chen, “H1 decentralized fuzzy model reference tracking control design for nonlinear interconnected systems,” IEEE Trans. Fuzzy Syst.,vol. 9, pp.795–809, 2001.
    [91] ˙ Zak S. H., System and Control. New York: Oxford, 2003.

    無法下載圖示 全文公開日期 2011/07/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE