簡易檢索 / 詳目顯示

研究生: 黃瑋倫
Wei-Lun Huang
論文名稱: 製備硫化銅鋅錫多層次微奈米球結構光觸媒分解水製氫之研究
Preparation of Cu2ZnSnS4 Hierarchical Microspherical Photocatalysts for H2 Generation by Water Splitting
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳景翔
Ching-Hsiang Chen
許世杰
Shih-Chieh Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 100
中文關鍵詞: 光觸媒製氫硫化銅鋅錫
外文關鍵詞: photocatalysts, hydrogen generation, Cu2ZnSnS4
相關次數: 點閱:173下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要利用硫化銅鋅錫做為光觸媒產氫的材料,經過簡單的低溫溶劑熱法合成出硫化銅鋅錫花狀多層次微米球。硫化銅鋅錫花狀多層次微米球具有好的分散性與高比表面積。當光觸媒與電解液接觸時可以提供更多的活性點。針對製程條件,在本研究中考慮了反應前驅物、反應溶劑及反應時間對合成硫化銅鋅錫花狀多層次微米球的影響。同時,利用電子顯微鏡、X-光繞射儀、光電子光譜儀、紫外光-可見光吸收光譜儀、能量色散光譜儀、拉曼、BET等分析技術,針對所合成的硫化銅鋅錫花狀多層次微米球進行形態、晶體結構、元素組成、光學性質、比表面積、進行分析。同時,將合成的硫化銅鋅錫花狀多層次微米球利用光化學沉積法將白金被覆於表面,以提供更多的活性點。將負載白金的硫化銅鋅錫花狀多層次微米球添加至犧牲試劑內,利用300瓦氙燈照射,進行光觸媒產氫之可行性評估。


In this stady, copper zinc tin sulfide (Cu2ZnSnS4, CZTS) flowerlike microspherical photocatalysts were synthesized by solvothermal method for hydrogen generation by water splitting process. The CZTS flowerlike microspherical photocatalysts own good dispersion and high specific surface areas for providing many activity sites in aqueous solution. Herein, the precursor species, reaction solvents and reaction time were used as parameters for studying the influenec on the synthesis process of CZTS flowerlike microspherical photocatalysts. In addition, electron microscopy, X-ray diffractometer, X-ray photoelectron spectroscopy, UV-visible absorption spectroscopy, energy dispersive spectrosopy, Raman spectroscopy and BET were used to characterize the morphology, crystallinity, composition, optical properties and specific surface areas of CZTS flowerlike microspherical photocatalysts. At the same time, a photosynthesis method was employed to deposit Pt co-catalysts on the surfaces of CZTS flowerlike microspherical photocatalysts to provide more many activity sites. In this thesis, the synthesized CZTS flowerlike microspherical photocatalysts were added into the the aqueous solution with sacrificial reagents to evaluate the possibility for hydrogen generation by using CZTS flowerlike microspherical photocatalysts under the irradiation of 300 W Xeron lamp.

目錄 中文摘要 I Abstract II 第一章、緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章、理論基礎與文獻回顧 5 2-1 氫能源簡介 5 2-1-1 氫能源與石化燃料比較 5 2-1-2 製氫技術 6 2-2 光觸媒簡介 9 2-2-1 本多-藤嵨效應(Honda-Fujishima effect) 9 2-2-2 光催化水分解製氫原理與機制 10 2-2-3半導體光觸媒材料的選擇 12 2-3 影響光催化水分解反應之因素 15 2-3-1 能隙 15 2-3-2 半導體和電解液界面之能帶彎曲 17 2-3-3 共觸媒 18 2-4 多層次微米球光觸媒製備方式 23 2-4-1 Cu2ZnSnS4之特性 24 2-4-2型態選擇:多層次結構 29 2-4-3應用:光觸媒製氫 43 第三章、實驗方法與步驟 47 3.1 實驗藥品、耗材與實驗設備 47 3.1.1藥品、耗材 47 3.1.2 實驗設備 54 3.2 分析儀器簡述 56 3.2.1 拉曼光譜分析儀 56 3.2.2 X射線繞射光譜儀 57 3.2.3場發射掃描式電子顯微鏡 59 3.2.4 穿透式電子顯微鏡 60 3.2.5比表面積分析 61 3.2.6熱重熱示差同步分析儀 62 3.2.7紫外光/可見光/近紅外光光譜分析 62 3.2.8 X光光電子能譜分析儀 63 3.3 實驗步驟 65 3.3.1 Cu2ZnSnS4花狀多層次微米球光觸媒製備 65 3.3.2 以光沉積法負載白金共觸媒 66 3.3.3 光分解水實驗 67 3.3.4 能帶分析實驗 68 第四章、結果與討論 72 4.1 硫化銅鋅錫花狀多層次微米球光觸媒合成參數分析 72 4.1.1 不同反應前驅物之效應 73 4.1.2 不同反應溶劑之效應 75 4.1.3 不同反應時間之效應 78 4.2 硫化銅鋅錫花狀多層次微米球光觸媒催化活性之影響 90 4.3 硫化銅鋅錫花狀多層次微米球光觸媒能帶位置分析 93 第五章、結論 96 第六章、參考文獻 97

1. P. P. Edwards, V. L. Kuznetsov, and W. I. David, Philosophical transactions of the Royal Society. Mathematical, physical, and engineering sciences, 365, 1043 (2007)
2. A. Fujishima, nature, 238, 37 (1972)
3. K. Maeda, A. Xiong, T. Yoshinaga, T. Ikeda, N. Sakamoto, T. Hisatomi, M. Takashima, D. Lu, M. Kanehara, and T. Setoyama, Angewandte Chemie, 122, 4190 (2010)
4. I. Cesar, A. Kay, J. A. Gonzalez Martinez, and M. Gratzel, Journal of the American Chemical Society, 128, 4582 (2006)
5. K. Maeda, M. Higashi, D. Lu, R. Abe, and K. Domen, Journal of the American Chemical Society, 132, 5858 (2010)
6. S. J. Park, J. W. Cho, J. K. Lee, K. Shin, J.-H. Kim, and B. K. Min, Progress in Photovoltaics: Research and Applications, 22, 122 (2014)
7. C. Jiang, J. S. Lee, and D. V. Talapin, Journal of the American Chemical Society, 134, 5010 (2012)
8. K. Yamada, N. Hoshino, and T. Nakada, Science and Technology of Advanced Materials, 7, 42 (2006)
9. Solar Spectral Irradiance: ASTM G-173 - NREL
10. F. Liu, K. Zhang, Y. Lai, J. Li, Z. Zhang, and Y. Liu, Electrochemical and Solid-State Letters, 13, H379 (2010)
11. J. Nowotny, C. Sorrell, L. Sheppard, and T. Bak, International Journal of Hydrogen Energy, 30, 521 (2005)
12. A. Yilanci, I. Dincer, and H. K. Ozturk, Progress in Energy and Combustion Science, 35, 231 (2009)
13. A. Kudo, Catalysis Surveys from Asia, 7, 31 (2003)
14. A. Kudo and Y. Miseki, Chemical Society Reviews, 38, 253 (2009)
15. X. Chen, S. Shen, L. Guo, and S. S. Mao, Chemical Reviews, 110, 6503 (2010)
16. O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, The Journal of Physical Chemistry B, 108, 6004 (2004)
17. S. Chen, A. Walsh, J.-H. Yang, X. Gong, L. Sun, P.-X. Yang, J.-H. Chu, and S.-H. Wei, Physical Review B, 83, 125201 (2011)
18. Y. Xu and M. A. Schoonen, American Mineralogist, 85, 543 (2000)
19. H. L. Zhuang and R. G. Hennig, The Journal of Physical Chemistry C, 117, 20440 (2013)
20. X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, Reports on Progress in Physics, 76, 046401 (2013)
21. L. Shang, C. Zhou, T. Bian, H. Yu, L.-Z. Wu, C.-H. Tung, and T. Zhang, Journal of Materials Chemistry A, 1, 4552 (2013)
22. F. Frusteri, S. Freni, L. Spadaro, V. Chiodo, G. Bonura, S. Donato, and S. Cavallaro, Catalysis Communications, 5, 611 (2004)
23. K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, and K. Domen, The Journal of Physical Chemistry C, 111, 7554 (2007)
24. A. Iwase, H. Kato, and A. Kudo, Catalysis letters, 108, 7 (2006)
25. H. Kato, K. Asakura, and A. Kudo, Journal of the American Chemical Society, 125, 3082 (2003)
26. Y.-C. Chiou, U. Kumar, and J. C. S. Wu, Applied Catalysis A: General, 357, 73 (2009)
27. M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani, and K. Domen, Chemistry Letters, 37, 138 (2008)
28. X. You, F. Chen, J. Zhang, and M. Anpo, Catalysis Letters, 102, 247 (2005)
29. S. K. Mohapatra, M. Misra, V. K. Mahajan, and K. S. Raja, The Journal of Physical Chemistry C, 111, 8677 (2007)
30. Y. Li, G. Lu, and S. Li, Applied Catalysis A: General, 214, 179 (2001)
31. J. Yang, H. Yan, X. Wang, F. Wen, Z. Wang, D. Fan, J. Shi, and C. Li, Journal of Catalysis, 290, 151 (2012)
32. X. Wang, G. Liu, Z.-G. Chen, F. Li, G. Q. Lu, and H.-M. Cheng, Electrochemistry Communications, 11, 1174 (2009)
33. K. Lee, International Journal of Hydrogen Energy, 29, 1343 (2004)
34. K. Li, B. Chai, T. Peng, J. Mao, and L. Zan, RSC Advances, 3, 253 (2013)
35. R. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Physical Review Letters, 72, 416 (1994)
36. W. W. Yu, L. Qu, W. Guo, and X. Peng, Chemistry of Materials, 15, 2854 (2003)
37. Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, The Journal of Physical Chemistry C, 115, 1786 (2011)
38. J. J. Scragg, P. J. Dale, L. M. Peter, G. Zoppi, and I. Forbes, Physica Status Solidi (b), 245, 1772 (2008)
39. K. Ito and T. Nakazawa, Japanese Journal of Applied Physics, 27, 2094 (1988)
40. N. Nakayama and K. Ito, Applied Surface Science, 92, 171 (1996)
41. H. Katagiri, Thin Solid Films, 480-481, 426 (2005)
42. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, Advanced Energy Materials, (2013)
43. S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, Applied Physics Letters, 94, 041903 (2009)
44. S. Chen, X. Gong, A. Walsh, and S.-H. Wei, Physical Review B, 79 (2009)
45. S. Chen, A. Walsh, Y. Luo, J.-H. Yang, X. G. Gong, and S.-H. Wei, Physical Review B, 82 (2010)
46. A. Khare, A. W. Wills, L. M. Ammerman, D. J. Norris, and E. S. Aydil, Chemical Communications, 47, 11721 (2011)
47. Z. Li, J. Shi, Q. Liu, Y. Chen, Z. Sun, Z. Yang, and S. Huang, Nanotechnology, 22, 265615 (2011)
48. L. Wang, W. Wang, and S. Sun, Journal of Materials Chemistry, 22, 6553 (2012)
49. S. Sarkar, K. Bhattacharjee, G. C. Das, and K. K. Chattopadhyay, CrystEngComm, 16, 2634 (2014)
50. W.-H. Zhou, Y.-L. Zhou, J. Feng, J.-W. Zhang, S.-X. Wu, X.-C. Guo, and X. Cao, Chemical Physics Letters, 546, 115 (2012)
51. L. Zheng, Y. Xu, Y. Song, C. Wu, M. Zhang, and Y. Xie, Inorganic Chemistry, 48, 4003 (2009)
52. Y.-L. Zhou, W.-H. Zhou, M. Li, Y.-F. Du, and S.-X. Wu, The Journal of Physical Chemistry C, 115, 19632 (2011)
53. A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kotschau, H. W. Schock, R. Schurr, A. Holzing, S. Jost, R. Hock, T. Vos, J. Schulze, and A. Kirbs, Thin Solid Films, 517, 2511 (2009)
54. H. Kaga, K. Saito, and A. Kudo, Chemical Communications (Cambridge, England), 46, 3779 (2010)
55. I. Tsuji, H. Kato, and A. Kudo, Chemistry of Materials, 18, 1969 (2006)
56. K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, Solar Energy Materials and Solar Cells, 93, 583 (2009)
57. M. Cao and Y. Shen, Journal of Crystal Growth, 318, 1117 (2011)
58. J. Xu, X. Yang, Q.-D. Yang, T.-L. Wong, and C.-S. Lee, The Journal of Physical Chemistry C, 116, 19718 (2012)
59. S. Shen, L. Zhao, and L. Guo, Materials Research Bulletin, 44, 100 (2009)
60. S. Shen, L. Zhao, X. Guan, and L. Guo, Journal of Physics and Chemistry of Solids, 73, 79 (2012)
61. I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Chemistry of Materials, 22, 1402 (2010)
62. X. Zhou, H. Chen, Y. Sun, K. Zhang, X. Fan, Y. Zhu, Y. Chen, G. Tao, and J. Shi, Applied Catalysis B: Environmental, 152-153, 271 (2014)
63. J. Zhang, J. Yu, Y. Zhang, Q. Li, and J. R. Gong, Nano Letters, 11, 4774 (2011)
64. P. Hu, S. S. Pramana, S. Cao, C. K. Ngaw, J. Lin, S. C. Loo, and T. T. Tan, Advanced Materials, 25, 2567 (2013)
65. M. Xu, J. Zai, Y. Yuan, and X. Qian, Journal of Materials Chemistry, 22, 23929 (2012)
66. T.-L. Li, C.-D. Cai, T.-F. Yeh, and H. Teng, Journal of Alloys and Compounds, 550, 326 (2013)
67. S. Shen, L. Zhao, and L. Guo, Journal of Physics and Chemistry of Solids, 69, 2426 (2008)
68. S. Shen, L. Zhao, Z. Zhou, and L. Guo, The Journal of Physical Chemistry C, 112, 16148 (2008)
69. A. Kudo, I. Tsuji, and H. Kato, Chemical Communications, 1958 (2002)
70. S. Brunauer, P. H. Emmett, and E. Teller, Journal of the American Chemical Society, 60, 309 (1938)
71. X. Wang, Z. Sun, C. Shao, D. M. Boye, and J. Zhao, Nanotechnology, 22, 245605 (2011)
72. Y.-L. Zhou, W.-H. Zhou, M. Li, Y.-F. Du, and S.-X. Wu, The Journal of Physical Chemistry C, 115, 19632 (2011)
73. M. Y. Valakh, O. Kolomys, S. Ponomaryov, V. Yukhymchuk, I. Babichuk, V. Izquierdo‐Roca, E. Saucedo, A. Perez‐Rodriguez, J. Morante, and S. Schorr, Physica Status Solidi (RRL)-Rapid Research Letters, 7, 258 (2013)
74. S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, and H. Deligianni, Advanced Energy Materials, 2, 253 (2012)
75. Z. Su, K. Sun, Z. Han, F. Liu, Y. Lai, J. Li, and Y. Liu, Journal of Materials Chemistry, 22, 16346 (2012)
76. C. Zou, L. Zhang, D. Lin, Y. Yang, Q. Li, X. Xu, X. a. Chen, and S. Huang, CrystEngComm, 13, 3310 (2011)
77. S. Chen and L.-W. Wang, Chemistry of Materials, 24, 3659 (2012)

無法下載圖示 全文公開日期 2019/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE