簡易檢索 / 詳目顯示

研究生: 柳創文
Chuang-Wun Liou
論文名稱: 以熱溶劑法製備CTSeS奈米線及應用於光電化學系統之光陰極產氫研究
Cu2Sn(SeyS1-y)3 Nanowires Synthesized via Solvothermal Process for Hydrogen Generation
指導教授: 陳良益
Liang-Yih Chen
口試委員: 吳季珍
none
陳景翔
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 127
中文關鍵詞: 硫硒化銅錫奈米線熱溶劑法
外文關鍵詞: copper tin sulfide selenide, nanowires, solvothrrmal
相關次數: 點閱:331下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中所探討的四元化合物半導體材料-硫硒化銅錫的能帶間隙因相似於硫(硒)化銅鋅錫,且其導帶之位置高於水的還原電位,因此適合做為以光進行水分解產生氫氣的電極材料。此外,受到量子侷限效應的影響,一維奈米材料具有良好的直線傳輸性。因此,在本研究中以熱溶劑法的方式成長硫硒化銅錫奈米線材料來做為日後進行光分解水產氫的電極材料。而在合成過程中將利用不同比例的硫與硒的比例進行材料能隙的調控。
    此合成主要分為三階段法與兩階段法兩種。在三階段法中,先合成Cu2-xSeS奈米線材。之後,再將初步合成的Cu2-xSeS奈米線材以檸檬酸鈉進行處理。由於檸檬酸根會抓取Cu2-xSeS中的銅離子,使Cu2-xSeS轉相成結構上較不穩定的CuSeS奈米線,借此幫助錫元素的摻雜。然而,於掃瞄式電子顯微鏡影像分析可看出:當合成時所使用硒比例提高時,將會影響其奈米線的型態。而由實驗分析可知檸檬酸鈉浸泡時間的長短與處理時氧氣的多寡將是一重要因子。對此,在本研究中亦採用兩階段的製程,探討在未經檸檬酸鈉處理的Cu2-xSeS奈米線材是否仍可進行錫元素的摻雜而製作出硫硒化銅錫奈米線。相關的結構訊息將由拉曼光譜與X光繞射分析進行分析獲得。


    In this study, a quaternary compound semiconductor-copper tin sulfide selenide could be employed as photocathode to produce hydrogen by water splitting due to similar band gap as copper zinc tin sulfide selenide and higher conduction band position than water reduction potential. In addition, nanowire materials own good carrier transport behavior because of quantum confinement effect. Therefore, a solvothermal method was used to synthesize copper tine sulfide selenide nanowire and the band gap modulation was controlled by the ratio of sulfur and selenium in the anion precursors.
    For copper tine sulfide selenide nanowire synthesis, three stages process and two stages process were used. In three stages process, Cu2-xSeS nanowires were synthesized at first. After that, Cu2-xSeS nanowires were treated by sodium citrate aqueous solution. Because citrate ions could catch copper ion from Cu2-xSeS nanowires, it can transfer into Cusses nanowires which is an unstable phase for the tin incorporation in the next step. However, the morphologies of nanowires could be destroyed when we increased the content of Se. Therefore, a two stages process was employed to discuss the possible for the incorporation of tin element without the sodium citrate treatment. The structural identifications were characterized by Raman and X-ray diffraction.

    中文摘要 I Abstract III 致謝 V 目錄 VII 表目錄 X 圖目錄 XI 第一章 、緒論 1 1-1 前言 1 1-2 再生能源產氫研究之簡介 3 1-3 研究動機與目的 5 第二章 、理論基礎與文獻回顧 8 2-1 光電化學水分解機制及原理 8 2-1-1 反應機制 9 2-1-2 光電化學系統之模型 11 2-2 半導體電極之主要特性 13 2-2-1 能隙 14 2-2-2 能帶彎曲理論 16 2-2-3 平帶電位 26 2-2-4 光電轉換效率 28 2-3 理想半導體材料的選擇 30 2-3-1 材料的改質與修飾 32 2-4 一維奈米線光陰極之製備方法 37 2-5 硫化銅錫硒 (Cu2Sn(Se,S)3,CTSeS)材料之特性 39 2-6 光電化學電池系統的組裝 42 2-6-1 pH值 44 第三章 、實驗方法與步驟 45 3-1 實驗流程圖 45 3-2 實驗藥品與儀器設備 45 3-2-1 藥品耗材名稱 45 3-2-2 實驗設備 48 3-2-3 分析之儀器 49 3-3 實驗步驟 58 3-3-1 光陰極材料CTSeS奈米線之製備 58 3-3-1-1 合成Cu2-xSeS奈米線: 58 3-3-1-2 Cu2-xSeS奈米線的轉相: 59 3-3-1-3 CTSeS奈米線的成長: 60 第四章 、結果與討論 62 4-1探討CuS的成長條件 62 4-1-1 成長Cu2-xS的機制 62 4-1-2 探討Cu2-xS浸泡檸檬酸鈉在不同時間之下的影響 66 4-2 成長不同比例的CTSeS 72 4-2-1 調控硒硫比例成長Cu2-xSeS 72 4-2-2 不同硒硫比的Cu2-xSeS做檸檬酸鈉的處理 78 4-2-3 成長CTSeS奈米線 84 4-3 Cu2-xSe經由不同浸泡檸檬酸鈉的時間之轉相分析 86 4-4 兩階段式直接成長CTSeS 89 4-4-1 成長Cu2-xSeS 89 4-4-2 成長CTSeS 94 第五章 、結論 104 第六章 、參考文獻 105

    1. Association for the study of Peak Oil&Gas, Peak's Oil,
    2. The Coming Global Oil Crisis, Peak's Oil,
    3. A. Fujishima and K. Honda, Nature, 238, 37 (1972)
    4. Lionel Vayssieres, On solar hydrogen and nanotechnology. (John Wiley & Sons, 2010).
    5. Jens R Rostrup-Nielsen, J. Cata., 85, 31 (1984)
    6. Sandra Sa, Hugo Silva, Lucia Brandao, Jose M Sousa, and Adelio Mendes, Appl. Cata. B, 99, 43 (2010)
    7. Xiaoqing You, Fokion N Egolfopoulos, and Hai Wang, Proceedings of the Combustion Institute, 32, 403 (2009)
    8. Jonghwa Chang, Y Kim, K Lee, Y Lee, Won Jae Lee, J Noh, M Kim, H Lim, Y Shin, and K Bae, Nuclear Engineering and Technology, 39, 111 (2007)
    9. Rachael Elder and Ray Allen, Prog. in Nuclear Energy, 51, 500 (2009)
    10. Jae Sung Lee, Catalysis surveys from Asia, 9, 217 (2005)
    11. Kazuhiko Maeda and Kazunari Domen, J. Phys. Chem. C, 111, 7851 (2007)
    12. Zhigang Zou and Hironori Arakawa, J. Photochem. Photobio. A, 158, 145 (2003)
    13. Yildiz Kalinci, Arif Hepbasli, and Ibrahim Dincer, Int. J. Hydrogen Energy., 34, 8799 (2009)
    14. Hyung-Sool Lee, Wim FJ Vermaas, and Bruce E Rittmann, Trends in biotechnology, 28, 262 (2010)
    15. Hemamala I Karunadasa, Elizabeth Montalvo, Yujie Sun, Marcin Majda, Jeffrey R Long, and Christopher J Chang, Science, 335, 698 (2012)
    16. Shahed UM Khan and Tamanna Sultana, Sol. Eng. Mater. Sol. Cel., 76, 211 (2003)
    17. Gopal K Mor, Karthik Shankar, Maggie Paulose, Oomman K Varghese, and Craig A Grimes, Nano Lett., 5, 191 (2005)
    18. Zhonghai Zhang, Md Faruk Hossain, and Takakazu Takahashi, Int. J. Hydrogen Energy., 35, 8528 (2010)
    19. Lionel Vayssieres, Conny Sathe, Sergei M Butorin, David K Shuh, Joseph Nordgren, and Jinghua Guo, Adv. Mater., 17, 2320 (2005)
    20. KG Upul Wijayantha, Sina Saremi-Yarahmadi, and Laurence M Peter, Phys. Chem. Chem. Phys., 13, 5264 (2011)
    21. HK Mulmudi, N Mathews, XC Dou, LF Xi, SS Pramana, YM Lam, and SG Mhaisalkar, Electrochem. Comm., 13, 951 (2011)
    22. Karin Keis, Eva Magnusson, Henrik Lindstrom, Sten-Eric Lindquist, and Anders Hagfeldt, Sol. Eng. Mater. Sol. Cel., 73, 51 (2002)
    23. Sudhakar Shet, Yanfa Yan, Heli Wang, Nuggehalli Ravindra, John Turner, and Mowafak Al‐Jassim, Adv. and Appl. in Electroceramics II, 235, 231 (2012)
    24. R Inguanta, C Garlisi, T Spano, S Piazza, and C Sunseri, J. Appl. Electrochem., 43, 199 (2013)
    25. L Weinhardt, M Blum, M Bar, C Heske, B Cole, B Marsen, and EL Miller, J. Phys. Chem. C, 112, 3078 (2008)
    26. Dong-Dong Qin, Chun-Lan Tao, Stuart A Friesen, Tsing-Hai Wang, Oomman K Varghese, Ning-Zhong Bao, Zheng-Yin Yang, Thomas E Mallouk, and Craig A Grimes, Chem. Comm., 48, 729 (2012)
    27. Qixi Mi, Robert H Coridan, Bruce S Brunschwig, Harry Gray, and Nathan Lewis, Energy Environ. Sci., (2013)
    28. Junyu Cao, Juanjuan Xing, Yuanjian Zhang, Hua Tong, Yingpu Bi, Tetsuya Kako, Masaki Takeguchi, and Jinhua Ye, Langmuir, 29, 3116 (2013)
    29. Eun Sun Kim, Naoyuki Nishimura, Ganesan Magesh, Jae Young Kim, Ji-Wook Jang, Hwichan Jun, Jun Kubota, Kazunari Domen, and Jae Sung Lee, J. Am. Chem. Soc., 135, 5375 (2013)
    30. Min Hyung Lee, Kuniharu Takei, Junjun Zhang, Rehan Kapadia, Maxwell Zheng, Yu‐Ze Chen, Junghyo Nah, Tyler S Matthews, Yu‐Lun Chueh, and Joel W Ager, Angew Chem. Int. Ed., 124, 10918 (2012)
    31. Adriana Paracchino, Vincent Laporte, Kevin Sivula, Michael Gratzel, and Elijah Thimsen, Nat. Mater., 10, 456 (2011)
    32. Jaehong Kim, Tsutomu Minegishi, Jun Kobota, and Kazunari Domen, Energy Environ. Sci., 5, 6368 (2012)
    33. Daisuke Yokoyama, Tsutomu Minegishi, Kazuhiko Maeda, Masao Katayama, Jun Kubota, Akira Yamada, Makoto Konagai, and Kazunari Domen, Electrochem. Comm., 12, 851 (2010)
    34. Guijun Ma, Tsutomu Minegishi, Daisuke Yokoyama, Jun Kubota, and Kazunari Domen, Chem. Phys. Lett., 501, 619 (2011)
    35. Daisuke Yokoyama, Tsutomu Minegishi, Kazuo Jimbo, Takashi Hisatomi, Guijun Ma, Masao Katayama, Jun Kubota, Hironori Katagiri, and Kazunari Domen, Appl. Phys. Express, 3, 1202 (2010)
    36. LaserFocusWorld, Air mass,
    37. Wikipedia, Sunlight,
    38. Lei Zheng, Yang Xu, Yan Song, Changzheng Wu, Miao Zhang, and Yi Xie, Inorg. Chem., 48, 4003 (2009)
    39. Jum Suk Jang, Hyun Gyu Kim, and Jae Sung Lee, Catalysis Today, 185, 270 (2012)
    40. Quanjun Xiang, Bei Cheng, and Jiaguo Yu, Applied Catalysis B: Environmental, (2013)
    41. Ihsan Barin, Fried Sauert, Ernst Schultze-Rhonhof, and Wang Shu Sheng, Thermochemical data of pure substances. (VCH Weinheim, 1993).
    42. Allen J Bard and Larry R Faulkner, Electrochemical methods: fundamentals and applications. (Wiley New York, 1980).
    43. Meng Ni, Michael KH Leung, Dennis YC Leung, and K Sumathy, Renewable and Sustainable Energy Reviews, 11, 401 (2007)
    44. Tadayoshi Sakata and Tomoji Kawai, Chem. Phys. Lett., 80, 341 (1981)
    45. Xiaobo Chen, Shaohua Shen, Liejin Guo, and Samuel S Mao, Chem. Rev., 110, 6503 (2010)
    46. Isabell Thomann, Blaise A Pinaud, Zhebo Chen, Bruce M Clemens, Thomas F Jaramillo, and Mark L Brongersma, Nano Lett., 11, 3440 (2011)
    47. Chih-Tang Sah, Robert N Noyce, and William Shockley, Proceedings of the IRE, 45, 1228 (1957)
    48. LL Kazmerski and GA Sanborn, J. Appl. Phys., 48, 3178 (1977)
    49. Hiroshi Yanagi, Kazushige Ueda, Hiromichi Ohta, Masahiro Orita, Masahiro Hirano, and Hideo Hosono, Sol. State. Comm., 121, 15 (2001)
    50. Sung Heum Park, Anshuman Roy, Serge Beaupre, Shinuk Cho, Nelson Coates, Ji Sun Moon, Daniel Moses, Mario Leclerc, Kwanghee Lee, and Alan J Heeger, Nat. Photonics, 3, 297 (2009)
    51. Lioz Etgar, Wei Zhang, Stefanie Gabriel, Stephen G Hickey, Md K Nazeeruddin, Alexander Eychmuller, Bin Liu, and Michael Gratzel, Adv. Mater., 24, 2202 (2012)
    52. F Braun, Ann. Phys. Chem, 153, 556 (1874)
    53. Walter Schottky, Naturwissenschaften, 26, 843 (1938)
    54. Arthur J Nozik and Rudiger Memming, J. Phys. Chem., 100, 13061 (1996)
    55. Amy L Linsebigler, Guangquan Lu, and John T Yates Jr, Chem. Rev., 95, 735 (1995)
    56. Michael Gratzel, Nature, 414, 338 (2001)
    57. Hans Luth, Solid surfaces, interfaces and thin films. (Springer, 2010).
    58. Zhen Zhang and John T Yates Jr, Chem. Rev., 112, 5520 (2012)
    59. Michael G Walter, Emily L Warren, James R McKone, Shannon W Boettcher, Qixi Mi, Elizabeth A Santori, and Nathan S Lewis, Chem. Rev., 110, 6446 (2010)
    60. A V Delgado, F Gonzalez-Caballero, RJ Hunter, LK Koopal, and J Lyklema, J. Colloid Inter. Sci., 309, 194 (2007)
    61. Roel Van de Krol and Michael Greatzel, Photoelectrochemical hydrogen production. (Springer, 2012).
    62. Adrian W Bott, Current Separations, 17, 87 (1998)
    63. Amal K Ghosh and H Paul Maruska, J. Electrochem. Soc., 124, 1516 (1977)
    64. Bruce Parkinson, Acc. Chem. Res., 17, 431 (1984)
    65. James R Bolton, Solar Energy, 57, 37 (1996)
    66. Arthur J Frank and Kenji Honda, J. Phys. Chem., 86, 1933 (1982)
    67. Tan T Vu, Laura del Rio, Teresa Valdes-Solis, and Gregorio Marban, Appl. Cata. B, (2013)
    68. Shiyou Chen, Aron Walsh, Ji-Hui Yang, XG Gong, Lin Sun, Ping-Xiong Yang, Jun-Hao Chu, and Su-Huai Wei, Phys. Rev. B, 83, 125201 (2011)
    69. Xiaobo Chen and Samuel S Mao, Chem. Rev., 107, 2891 (2007)
    70. 馬遠榮, 科學發展月刊, 382 期, 72 (2004)
    71. A Paul Alivisatos, J. Phys. Chem., 100, 13226 (1996)
    72. Poulomi Roy, Doohun Kim, Kiyoung Lee, Erdmann Spiecker, and Patrik Schmuki, Nanoscale, 2, 45 (2010)
    73. Dung Duonghong, Enrico Borgarello, and Michael Graetzel, J. Am. Chem. Soc., 103, 4685 (1981)
    74. Keun Woo Cho and Hyuk Sang Kwon, Catalysis Today, 120, 298 (2007)
    75. Satoshi Tominaka, Toshiyuki Momma, and Tetsuya Osaka, Electrochimica Acta, 53, 4679 (2008)
    76. Ningzhong Bao, Liming Shen, Tsuyoshi Takata, and Kazunari Domen, Chem. Mater., 20, 110 (2007)
    77. Kazuhiko Maeda, Anke Xiong, Taizo Yoshinaga, Takahiro Ikeda, Naoyuki Sakamoto, Takashi Hisatomi, Masaki Takashima, Daling Lu, Masayuki Kanehara, and Tohru Setoyama, Angew Chem. Int. Ed., 122, 4190 (2010)
    78. R Dholam, N Patel, M Adami, and A Miotello, Int. J. Hydrogen Energy., 34, 5337 (2009)
    79. Jong Hyeok Park, Sungwook Kim, and Allen J Bard, Nano Lett., 6, 24 (2006)
    80. Gongming Wang, Xunyu Yang, Fang Qian, Jin Z Zhang, and Yat Li, Nano Lett., 10, 1088 (2010)
    81. Guosheng Wu, Min Tian, and Aicheng Chen, J. Photochem. Photobio. A, 233, 65 (2012)
    82. Caolong Li, Jian Yuan, Bingyan Han, Li Jiang, and Wenfeng Shangguan, Int. J. Hydrogen Energy., 35, 7073 (2010)
    83. Lin Li, Lele Duan, Fuyu Wen, Can Li, Mei Wang, Anders Hagfeldt, and Licheng Sun, Chem. Comm., 48, 988 (2012)
    84. Jun Xu, Chun-Sing Lee, Yong-Bing Tang, Xue Chen, Zhen-Hua Chen, Wen-Jun Zhang, Shuit-Tong Lee, Weixin Zhang, and Zeheng Yang, ACS Nano, 4, 1845 (2010)
    85. Z. Q. Li, J. H. Shi, Q. Q. Liu, Y. W. Chen, Z. Sun, Z. Yang, and S. M. Huang, Nanotechnology, 22, 265615 (2011)
    86. Jun Xu, Weixin Zhang, Zeheng Yang, Shaixia Ding, Chunyan Zeng, Lingling Chen, Qiang Wang, and Shihe Yang, Adv. Funct. Mater., 19, 1759 (2009)
    87. C. P. Chan, Z. Chen, H. Lam, and C. Surya, 741108 (2009)
    88. Zhenghua Su, Chang Yan, Ding Tang, Kaiwen Sun, Zili Han, Fangyang Liu, Yanqing Lai, Jie Li, and Yexiang Liu, CrystEngComm, 14, 782 (2012)
    89. Liang Shi, Congjian Pei, Yeming Xu, and Quan Li, J. Am. Chem. Soc., 133, 10328 (2011)
    90. Masahiro Miyauchi, Takumi Hanayama, Daiki Atarashi, and Etsuo Sakai, J. Phys. Chem. C, 116, 23945 (2012)
    91. Li Wei, Sun Yun, Liu Wei, Li Feng-Yan, and Zhou Lin, Chinese Physics, 15, 878 (2006)
    92. Kyoohee Woo, Youngwoo Kim, and Jooho Moon, Energy & Environmental Science, 5, 5340 (2012)
    93. Ying-Teng Zhai, Shiyou Chen, Ji-Hui Yang, Hong-Jun Xiang, Xin-Gao Gong, Aron Walsh, Joongoo Kang, and Su-Huai Wei, Physical Review B, 84, 075213 (2011)
    94. M Bouaziz, M Amlouk, and S Belgacem, Thin Solid Films, 517, 2527 (2009)
    95. M Bouaziz, J Ouerfelli, M Amlouk, and S Belgacem, physica status solidi (a), 204, 3354 (2007)
    96. Anthony T Ward, The Journal of Physical Chemistry, 72, 4133 (1968)
    97. Hao Guan, Honglie Shen, Chao Gao, and Xiancong He, Journal of Materials Science: Materials in Electronics, 1 (2013)
    98. P. A. Fernandes, P. M. P. Salome, and A. F. da Cunha, physica status solidi (c), 7, 901 (2010)
    99. Dominik M. Berg, Rabie Djemour, Levent Gutay, Guillaume Zoppi, Susanne Siebentritt, and Phillip J. Dale, Thin Solid Films, 520, 6291 (2012)
    100. David Avellaneda, M. T. S. Nair, and P. K. Nair, Journal of The Electrochemical Society, 157, D346 (2010)
    101. G. Hema Chandra, O. Lakshmana Kumar, R. Prasada Rao, and S. Uthanna, J Mater Sci, 46, 6952 (2011)
    102. Mahshid Ahmadi, Stevin S. Pramana, Sudip K. Batabyal, Chris Boothroyd, Subodh G. Mhaisalkar, and Yeng Ming Lam, Inorganic Chemistry, 52, 1722 (2013)
    103. G. Suresh Babu, Y. B. Kishore Kumar, Y. Bharath Kumar Reddy, and V. Sundara Raja, Materials Chemistry and Physics, 96, 442 (2006)
    104. Michelle E. Norako, Matthew J. Greaney, and Richard L. Brutchey, Journal of the American Chemical Society, 134, 23 (2011)
    105. P. Uday Bhaskar, G. Suresh Babu, Y. B. Kishore Kumar, and V. Sundara Raja, Applied Surface Science, 257, 8529 (2011)
    106. Dong-Hau Kuo, Wei-Di Haung, Ying-Sheng Huang, Jiun-De Wu, and Yan-Jih Lin, Thin Solid Films, 518, 7218 (2010)
    107. Brendan Flynn, Ian Braly, Philip A. Glover, Richard P. Oleksak, Chris Durgan, and Gregory S. Herman, Materials Letters, 107, 214 (2013)
    108. Zhaoping Liu, Dan Xu, Jianbo Liang, Jianming Shen, Shuyuan Zhang, and Yitai Qian, The Journal of Physical Chemistry B, 109, 10699 (2005)
    109. B. Minceva-Sukarova, M. Najdoski, I. Grozdanov, and C. J. Chunnilall, Journal of Molecular Structure, 410–411, 267 (1997)

    無法下載圖示 全文公開日期 2018/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE