簡易檢索 / 詳目顯示

研究生: 邱宣翰
Hsuan-Han Chiu
論文名稱: 二氧化碳烯烴化: 嚴謹費托合成製程開發與經濟可行性探討
From CO2 to Olefins : A Rigorous Process Design of FT Synthesis and Techno-Economic Viability
指導教授: 李豪業
Hao-Yeh Lee
余柏毅
Bor-Yih Yu
口試委員: 陳誠亮
錢義隆
李豪業
汪進忠
余柏毅
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 97
中文關鍵詞: 碳捕捉費托合成技術經濟分析最適化
外文關鍵詞: Carbon capture, Fischer-Tropsch reaction, Techno-economic analysis, Optimization
相關次數: 點閱:159下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

透過結合費托合成與逆水氣轉化反應來進行碳捕捉與利用被視為一種極具前瞻性碳捕捉路徑,此反應首先透過逆水氣轉化反應將二氧化碳轉化為一氧化碳,隨後再將其轉化為烯烴類產物。本研究之主要目標為使用此種複合式反應將二氧化碳捕捉為低碳數(二至四碳)之烯烴類碳氫化合物。此研究中之嚴謹製程設計與分析一共包含反應段設計、二氧化碳段設計、低溫精餾段設計與優化和經濟分析四個重要階段。首先,反應段會完成上述反應並達成75.45%之二氧化碳轉換率,其中有82.79%之二氧化碳將被轉換為二至四碳之烯烴類碳氫化合物。隨後,二氧化碳吸收段將會使用乙烯胺系統搭配分子篩來進行二氧化碳的捕捉與再利用,研究結果顯示於乙烯胺系統中每噸的二氧化碳將會需要3.63千兆焦耳之能量,而分子篩則需要7.06千兆焦耳用於每噸之二氧化碳捕捉,故本研究認為連續式碳捕捉系統於大型製程的表現上優於批次系統。再來,低溫精餾段則會透過三座塔將反應物分成乙丙烯複合、丁烯與富氫氣回收之三股物流。為了減少支出,富氫氣之回收流將會以直接燃燒與吸附後燃燒兩種方式進行回收再利用。最終,透過不同的優化模型將整廠模擬進行優化,並以不同的氫氣與二氧化碳進行經濟與環境分析。分析結果顯示,此製程透過現今已工業化之程序,最佳表現可透過生產每噸之產物捕捉3.45噸之二氧化碳,而其最低之售出價格為每噸之產物1.178千美元略低於市場價格。此外,若使用之氫氣每噸排放少於6.82噸之二氧化碳,此製程便可達到淨減碳之成效。最終透過敏感度分析可發現,若要加強此製程於減碳力和經濟上之競爭力,確保使用之氫氣來源為綠氫和大幅度將低綠氫之價格為其中最重要之目標。


The combination of FT synthesis and the reversed water gas shifting reaction, which initiates the reaction with carbon dioxide (CO2) and hydrogen (H2), is considered one of the most significant methods for carbon capture and utilization, aiming to achieve net zero carbon emissions by 2050. This article presents a comprehensive investigation into the process design of the FT synthesis for light olefins synthesis. Two distinct scenarios are constructed, encompassing the reaction section, CO2 absorption section, and cryogenic distillation section, while after optimization the process achieves a remarkable carbon efficiency of 99.6%. Furthermore, a detailed techno-economic analysis and CO2 equivalent calculation are conducted to evaluate the economic and environmental aspects. Through twenty-five permutations of different H2 and CO2 sources, the results reveal the lowest product unit price and the best decarbonization capability, yielding 1.178 kUSD/Ton and -3.45 Ton-CO2/Ton-C2-C4 olefin, respectively, using current commercialized technology. Moreover, a sensitivity test highlights that H2 is the most influential factor affecting both the decarbonization ability and economic competitiveness of this process in the current scenario. Additionally, it is observed that if the CO2 emissions caused by H2 can be reduced to less than 6.89 Ton-H2/Ton-CO2, a net reduction in CO2 emissions can be achieved through this process.

Contents 誌謝 4 摘要 5 ABSTRACT 6 Contents 7 Figure contents 9 Table contents 11 1. Introduction 13 1.1 Research background 13 1.2 Literature review 14 1.3 Thesis organization 16 2. Process overview 18 2.1 Thermodynamics Models 18 2.2 Physical Properties 18 2.3 Reaction Kinetics 19 3. Process development 23 3.1 Process overview 23 3.2 Reaction section 25 3.2.1 Reactor design scheme 1 25 3.2.2 Reactor design scheme 2 27 3.2.3 Reactor design scheme 3 29 3.2.4 Reactor design scheme 4 31 3.2.5 Reactor design scheme 5 34 3.2.6 Reactor design scheme 6 35 3.2.7 Conclusion for reaction section 37 3.3 CO2 absorption section 39 3.4 Cryogenic distillation section 41 3.4.1 PSA scenario 44 3.4.2 Direct combustion scenario 49 4. Optimization 53 4.1 Particle swarm optimization 53 4.2 Multi-objective searching 65 4.3 Probability-based optimization 74 5. Process analysis 81 5.1 CO2 efficiency analysis 81 5.2 CO2 emission and techno-economic analysis 82 5.3 Economic competitiveness and pathway comparison 89 6. Conclusion 92 Reference 93

1. Della Monica, F. and A.W. Kleij, Mechanistic guidelines in nonreductive conversion of CO 2: the case of cyclic carbonates. Catalysis Science & Technology, 2020. 10(11): p. 3483-3501.
2. Theofanidis, S.A., A.N. Antzaras, and A.A. Lemonidou, CO2 as a building block: from capture to utilization. Current Opinion in Chemical Engineering, 2023. 39: p. 100902.
3. Putting CO2 to USE. 2019, IEA: IEA, Paris.
4. IEA, I., The future of petrochemicals. 2018, International Energy Agency. p. 1-132.
5. Akah, A. and M. Al-Ghrami, Maximizing propylene production via FCC technology. Applied Petrochemical Research, 2015. 5(4): p. 377-392.
6. Arutyunov, V., N. Pogosyan, M. Pogosyan, L. Tavadyan, O. Shapovalova, and L. Strekova, Production of olefins by the conjugated oxidation of light hydrocarbons. Chemical Engineering Journal, 2017. 329: p. 231-237.
7. Dry, M.E., The Fischer-Tropsch process-commercial aspects. Catalysis today, 1990. 6(3): p. 183-206.
8. Cuéllar-Franca, R., P. García-Gutiérrez, I. Dimitriou, R.H. Elder, R.W. Allen, and A. Azapagic, Utilising carbon dioxide for transport fuels: The economic and environmental sustainability of different Fischer-Tropsch process designs. Applied Energy, 2019. 253: p. 113560.
9. Zang, G., P. Sun, A.A. Elgowainy, A. Bafana, and M. Wang, Performance and cost analysis of liquid fuel production from H2 and CO2 based on the Fischer-Tropsch process. Journal of CO2 Utilization, 2021. 46: p. 101459.
10. Wang, Y.-N., W.-P. Ma, Y.-J. Lu, J. Yang, Y.-Y. Xu, H.-W. Xiang, Y.-W. Li, Y.-L. Zhao, and B.-J. Zhang, Kinetics modelling of Fischer–Tropsch synthesis over an industrial Fe–Cu–K catalyst. Fuel, 2003. 82(2): p. 195-213.
11. Van der Laan, G.P. and A.A. Beenackers, Intrinsic kinetics of the gas–solid Fischer–Tropsch and water gas shift reactions over a precipitated iron catalyst. Applied Catalysis A: General, 2000. 193(1-2): p. 39-53.
12. Lox, E.S. and G.F. Froment, Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 1. Experimental procedure and results. Industrial & Engineering Chemistry Research, 1993. 32(1): p. 61-70.
13. Moazami, N., M.L. Wyszynski, K. Rahbar, A. Tsolakis, and H. Mahmoudi, A comprehensive study of kinetics mechanism of Fischer-Tropsch synthesis over cobalt-based catalyst. Chemical Engineering Science, 2017. 171: p. 32-60.
14. Najari, S., G. Gróf, S. Saeidi, and F. Gallucci, Modeling and optimization of hydrogenation of CO2: Estimation of kinetic parameters via Artificial Bee Colony (ABC) and Differential Evolution (DE) algorithms. International Journal of Hydrogen Energy, 2019. 44(10): p. 4630-4649.
15. Do, T.N. and J. Kim, Green C2-C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: Process development and techno-economic analysis. Energy conversion and Management, 2020. 214: p. 112866.
16. Hibbert, D.B., Genetic algorithms in chemistry. Chemometrics and Intelligent Laboratory Systems, 1993. 19(3): p. 277-293.
17. Babu, B. and R. Angira, Modified differential evolution (MDE) for optimization of non-linear chemical processes. Computers & chemical engineering, 2006. 30(6-7): p. 989-1002.
18. Chuanxin, Y. and Y. Xuefeng, A fuzzy-based adaptive genetic algorithm and its case study in chemical engineering. Chinese Journal of Chemical Engineering, 2011. 19(2): p. 299-307.
19. Tao, J. and N. Wang, DNA computing based RNA genetic algorithm with applications in parameter estimation of chemical engineering processes. Computers & Chemical Engineering, 2007. 31(12): p. 1602-1618.
20. van de Berg, D., T. Savage, P. Petsagkourakis, D. Zhang, N. Shah, and E.A. del Rio-Chanona, Data-driven optimization for process systems engineering applications. Chemical Engineering Science, 2022. 248: p. 117135.
21. Thebelt, A., J. Kronqvist, M. Mistry, R.M. Lee, N. Sudermann-Merx, and R. Misener, ENTMOOT: A framework for optimization over ensemble tree models. Computers & Chemical Engineering, 2021. 151: p. 107343.
22. Marini, F. and B. Walczak, Particle swarm optimization (PSO). A tutorial. Chemometrics and Intelligent Laboratory Systems, 2015. 149: p. 153-165.
23. Blank, J. and K. Deb, Pymoo: Multi-objective optimization in python. Ieee access, 2020. 8: p. 89497-89509.
24. The scikit-optimize contributors, 2018. scikit-optimize/scikit-optimize: v0.5.2. URL: https://doi.org/10.5281/zenodo.1207017.
25. Aspen Plus, Version 11.0. Aspen Technology Inc
26. Rate-Based Model of the CO2 Capture Process by MEA using Aspen Plus. Aspen Technology Inc
27. Yu, B.Y. and I.L. Chien, Design and Optimization of the Methanol‐to‐Olefin Process. Part I: Steady‐State Design and Optimization. Chemical Engineering & Technology, 2016. 39(12): p. 2293-2303.
28. Xu, J. and G.F. Froment, Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics. AIChE journal, 1989. 35(1): p. 88-96.
29. Cheng, K., J. Kang, D.L. King, V. Subramanian, C. Zhou, Q. Zhang, and Y. Wang, Advances in catalysis for syngas conversion to hydrocarbons, in Advances in catalysis. 2017, Elsevier. p. 125-208.
30. Gardarsdottir, S.O., E. De Lena, M. Romano, S. Roussanaly, M. Voldsund, J.-F. Pérez-Calvo, D. Berstad, C. Fu, R. Anantharaman, and D. Sutter, Comparison of technologies for CO2 capture from cement production—Part 2: Cost analysis. Energies, 2019. 12(3): p. 542.
31. Herron, S., A. Zoelle, and W.M. Summers, Cost of capturing CO2 from industrial sources. 2014, National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV ….
32. Leva, M., M. Weintraub, M. Grummer, and E. Clark, Cooling of gases through packed tubes. Industrial & Engineering Chemistry, 1948. 40(4): p. 747-752.
33. Turton, R., R.C. Bailie, W.B. Whiting, and J.A. Shaeiwitz, Analysis, synthesis and design of chemical processes. 2008: Pearson Education.
34. Nittaya, T., P.L. Douglas, E. Croiset, and L.A. Ricardez-Sandoval, Dynamic modelling and control of MEA absorption processes for CO2 capture from power plants. Fuel, 2014. 116: p. 672-691.
35. Chen, E. and G.T. Rochelle, Pilot plant for CO2 capture using aqueous piperazine/potassium carbonate, in Greenhouse Gas Control Technologies 7. 2005, Elsevier. p. 1821-1824.
36. Rabensteiner, M., G. Kinger, M. Koller, and C. Hochenauer, Pilot plant study of aqueous solution of piperazine activated 2-amino-2-methyl-1-propanol for post combustion carbon dioxide capture. International Journal of Greenhouse Gas Control, 2016. 51: p. 106-117.
37. Notz, R., H.P. Mangalapally, and H. Hasse, Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA. International Journal of Greenhouse Gas Control, 2012. 6: p. 84-112.
38. Bravo, J., D. Drapanauskaite, N. Sarunac, C. Romero, T. Jesikiewicz, and J. Baltrusaitis, Optimization of energy requirements for CO2 post-combustion capture process through advanced thermal integration. Fuel, 2021. 283: p. 118940.
39. Wang, S., Y. Wang, Y. Kuang, S. Xu, S. Gao, L. Liu, H. Niu, P. Xiao, and B. Huang, Adsorption behaviour of molecular sieve and activated carbon for CO2 adsorption at cold temperatures. Carbon Neutrality, 2022. 1(1): p. 16.
40. Brandani, F. and D.M. Ruthven, The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Industrial & engineering chemistry research, 2004. 43(26): p. 8339-8344.
41. Brasington, R.D., Haslback, John L., Kuehn, Norma J., Lewis, Eric G., Pinkerton, Lora L., Turner, Marc J., Varghese, Elsy, & Woods, Mark, Cost and Performance Baseline for Fossil Energy Plants - Volume 2: Coal to Synthetic Natural Gas and Ammonia. 2011: United States.
42. Luyben, W.L., Principles and case studies of simultaneous design. 2012: John Wiley & Sons.
43. Burgers, I., L. Dehdari, P. Xiao, K.G. Li, E. Goetheer, and P. Webley, Techno-economic analysis of PSA separation for hydrogen/natural gas mixtures at hydrogen refuelling stations. International Journal of Hydrogen Energy, 2022. 47(85): p. 36163-36174.
44. Xiao, J., Y. Peng, P. Bénard, and R. Chahine, Thermal effects on breakthrough curves of pressure swing adsorption for hydrogen purification. International Journal of Hydrogen Energy, 2016. 41(19): p. 8236-8245.
45. Farooqui, A., F. Di Tomaso, A. Bose, D. Ferrero, J. Llorca, and M. Santarelli, Techno-economic and exergy analysis of polygeneration plant for power and DME production with the integration of chemical looping CO2/H2O splitting. Energy conversion and management, 2019. 186: p. 200-219.
46. Dorris, C.C., E. Lu, S. Park, and F.H. Toro, High-purity oxygen production using mixed ionic-electronic conducting sorbents. 2016.
47. Gao, T., J.L. Selinger, and G.T. Rochelle, Demonstration of 99% CO2 removal from coal flue gas by amine scrubbing. International Journal of Greenhouse Gas Control, 2019. 83: p. 236-244.
48. Michailos, S. and J. Gibbins, A modelling study of post-combustion capture plant process conditions to facilitate 95–99% CO2 capture levels from gas turbine flue gases. Frontiers in Energy Research, 2022. 10: p. 866838.
49. Lee, A.S., J.C. Eslick, D.C. Miller, and J.R. Kitchin, Comparisons of amine solvents for post-combustion CO2 capture: A multi-objective analysis approach. International Journal of Greenhouse Gas Control, 2013. 18: p. 68-74.
50. Wang, Y., T.-Y. Chen, and D.G. Vlachos, NEXTorch: a design and Bayesian optimization toolkit for chemical sciences and engineering. Journal of Chemical Information and Modeling, 2021. 61(11): p. 5312-5319.
51. Park, S., J. Na, M. Kim, and J.M. Lee, Multi-objective Bayesian optimization of chemical reactor design using computational fluid dynamics. Computers & Chemical Engineering, 2018. 119: p. 25-37.
52. Gadalla, M.A., Z. Olujic, P.J. Jansens, M. Jobson, and R. Smith, Reducing CO2 emissions and energy consumption of heat-integrated distillation systems. Environmental science & technology, 2005. 39(17): p. 6860-6870.
53. Nguyen, T.B. and E. Zondervan, Methanol production from captured CO2 using hydrogenation and reforming technologies_ environmental and economic evaluation. Journal of CO2 utilization, 2019. 34: p. 1-11.
54. Howarth, R.W. and M.Z. Jacobson, How green is blue hydrogen? Energy Science & Engineering, 2021. 9(10): p. 1676-1687.
55. Uddin, Z., B.-Y. Yu, and H.-Y. Lee, Evaluation of alternative processes of CO2 methanation: Design, optimization, control, techno-economic and environmental analysis. Journal of CO2 Utilization, 2022. 60: p. 101974.
56. Chiou, H.-H., C.-J. Lee, B.-S. Wen, J.-X. Lin, C.-L. Chen, and B.-Y. Yu, Evaluation of alternative processes of methanol production from CO2: Design, optimization, control, techno-economic, and environmental analysis. Fuel, 2023. 343: p. 127856.
57. Yu, B.-Y., P.-J. Wu, C.-C. Tsai, and S.-T. Lin, Evaluating the direct CO2 to diethyl carbonate (DEC) process: Rigorous simulation, techno-economical and environmental evaluation. Journal of CO2 Utilization, 2020. 41: p. 101254.
58. Lee, C.-T., C.-C. Tsai, P.-J. Wu, B.-Y. Yu, and S.-T. Lin, Screening of CO2 utilization routes from process simulation: Design, optimization, environmental and techno-economic analysis. Journal of CO2 Utilization, 2021. 53: p. 101722.
59. Yu, B.-Y., M.-K. Chen, and I.-L. Chien, Assessment on CO2 utilization through rigorous simulation: converting CO2 to dimethyl carbonate. Industrial & Engineering Chemistry Research, 2018. 57(2): p. 639-652.
60. Yu, Y.-C., T.-Y. Wang, L.-H. Chang, P.-J. Wu, B.-Y. Yu, and W.-Y. Yu, Conceptual design, environmental, and economic evaluation of direct copolymerization process of carbon dioxide and 1, 4-butanediol. Journal of the Taiwan Institute of Chemical Engineers, 2020. 116: p. 36-42.

QR CODE