簡易檢索 / 詳目顯示

研究生: 楊凱米
Kai-Mi Yang
論文名稱: 設計5G開放式無線電存取網路之多模式軟體定義分散單元
Design of Multi-Mode Software Defined O-DU for 5G O-RAN
指導教授: 徐勝均
Sendren Sheng-Dong Xu
口試委員: 許騰尹
Terng-Yin Hsu
柯正浩
Kevin Cheng-Hao Ko
徐勝均
Sendren Sheng-Dong Xu
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 第五代行動通訊新無線實體層開放式無線電存取網路O-RAN分散單元
外文關鍵詞: The 5th Generation Mobile Networks (5G) New Radio (NR), Physical Layer, Open Radio Access Network (O-RAN), O-RAN Distributed Unit (O-DU)
相關次數: 點閱:318下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 方法與貢獻 2 1.3 論文架構 3 第二章 預備知識 5 2.1 第五代行動通訊新無線介紹 5 2.1.1 第五代行動通訊新無線發展 5 2.1.2 三大使用情境 6 2.2 技術規範 8 2.3 5G NR無線網路佈署 13 2.4 架構切分 20 2.5 傳統無線網路架構 22 2.6 開放式無線電存取網路 23 2.7 實體層介紹 24 2.8 實體層通道與訊號介紹 26 2.9 幀結構 29 2.10 OpenAirInterface平台 31 2.11 DPDK介紹 32 2.12 多執行緒概述 34 2.13 單指令流多資料流 37 2.14 阿姆達爾定律(Amdahl’s Law) 38 2.15 古斯塔夫森定律(Gustafson’s Law) 39 第三章 3GPP定義5G NR基地台設計之選項7.2架構 40 3.1 問題陳述 40 3.2 選項7.2切分架構 40 3.3 實體層選項7.2架構 41 第四章 3GPP定義5G NR基地台設計之選項8架構 45 4.1 選項8切分架構 45 4.2 原始程式架構 45 4.3 選項8實體層架構 46 4.4 Low-PHY原始程序 47 4.5 Low-PHY平行化設計 48 第五章 測試結果與討論 52 5.1 評估標準 52 5.2 實驗結果與分析 54 第六章 結論與未來展望 60 6.1 結論 60 6.2 未來展望 61 參考文獻 62

[1] T. Malche and P. Maheshwary, “Internet of Things (IoT) for building smart home system,” in Proc. International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), Palladam, India, February 10-11, 2017, pp. 65-70, DOI: 10.1109/I-SMAC.2017.8058258.
[2] A. Aminjavaheri, A. RezazadehReyhani, R. Khalona, H. Moradi, and B. Farhang-Boroujeny, “Underlay control signaling for ultra-reliable low-latency IoT communications,” in Proc. IEEE International Conference on Communications Workshops, Kansas City, MO, USA, May 20-24, 2018, pp. 1-6, DOI: 10.1109/ICCW.2018.8403493.
[3] T. Manglayev, R. C. Kizilirmak, and Y. H. Kho, “Comparison of parallel and successive interference cancellation for non-orthogonal multiple access,” in Proc. International Conference on Computing and Network Communications, Astana, Kazakhstan, August 15-17, 2018, pp. 74-77, DOI: 10.1109/CoCoNet.2018.8476815.
[4] A. Guidotti, A. Vanelli-Coralli, M. Conti, S. Andrenacci, S. Chatzinotas, N. Maturo, B. Evans, A. Awoseyila, A. Ugolini, T. Foggi, L. Gaudio, N. Alagha, and S. Cioni, “Architectures and key technical challenges for 5G systems incorporating satellites,” IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2624-2639, March 2019, DOI: 10.1109/TVT.2019.2895263.
[5] C. Hsu, Y. Hsu, and H. Wei, “Energy-efficient and reliable MEC offloading for heterogeneous industrial IoT networks,” in Proc. European Conference on Networks and Communications, Valencia, Spain, June 18-21, 2019, pp. 384-388, DOI: 10.1109/EuCNC.2019.8802020.
[6] J. Yeo, H. Ji, J. Bang, Y. Kim, and J. Lee, “A novel group retransmission scheme for industrial IoT over 5G,” in Proc. IEEE Globecom Workshops, Waikoloa, HI, USA, December 9-13, 2019, pp. 1-5, DOI: 10.1109/GCWkshps45667.2019.9024444.
[7] M. Mozaffari, Y.-P. E. Wang, O. Liberg, and J. Bergman, “Flexible and efficient deployment of NB-IoT and LTE-MTC in coexistence with 5G New Radio,” in Proc. IEEE Conference on Computer Communications Workshops, Paris, France, May 2-April 29, 2019, pp. 391-396, DOI: 10.1109/INFCOMW.2019.8845119.
[8] N. H. Mahmood, D. Laselva, D. Palacios, M. Emara, M. C. Filippou, D. M. Kim, and I. de-la-Bandera, “Multi-channel access solutions for 5G New Radio,” in Proc. IEEE Wireless Communications and Networking Conference Workshop, Marrakech, Morocco, April 15-18, 2019, pp. 1-6, DOI: 10.1109/WCNCW.2019.8902668.
[9] L. Chettri and R. Bera, “A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16-32, January 2020, DOI: 10.1109/JIOT.2019.2948888.
[10] M. Säily, C. B. Estevan, J. J. Gimenez, F. Tesema, W. Guo, D. Gomez-Barquero, and D. Mi, “5G radio access network architecture for terrestrial broadcast services,” IEEE Transactions on Broadcasting, vol. 66, no. 2, pp. 404-415, June 2020, DOI: 10.1109/TBC.2020.2985906.
[11] L. C. Alexandre, A. L. De Souza Filho, and A. C. Sodré, “Indoor coexistence analysis among 5G New Radio, LTE-A and NB-IoT in the 700 MHz band,” IEEE Access, vol. 8, pp. 135000-135010, July 2020, DOI: 10.1109/ACCESS.2020.3011267.
[12] S. A. Gbadamosi, G. P. Hancke, and A. M. Abu-Mahfouz, “Building upon NB-IoT networks: A roadmap towards 5G New Radio networks,” IEEE Access, vol. 8, pp. 188641-188672, October 2020, DOI: 10.1109/ACCESS.2020.3030653.
[13] H. Malik, M. M. Alam, Y. Le Moullec, and Q. Ni, “Interference-aware radio resource allocation for 5G ultra-reliable low-latency communication,” in Proc. IEEE Globecom Workshops, Abu Dhabi, United Arab Emirates, December 9-13, 2018, pp. 1-6, DOI: 10.1109/GLOCOMW.2018.8644301.
[14] P. Popovski, Č. Stefanović, J. J. Nielsen, E. de Carvalho, M. Angjelichinoski, K. F. Trillingsgaard, and A. Bana, “Wireless access in ultra-reliable low-latency communication (URLLC),” IEEE Transactions on Communications, vol. 67, no. 8, pp. 5783-5801, August 2019, DOI: 10.1109/TCOMM.2019.2914652.
[15] W. Chen, X. Fan, and L. Chen, “A CNN-based packet classification of eMBB, mMTC and URLLC applications for 5G,” in Proc. International Conference on Intelligent Computing and its Emerging Applications, Tainan, Taiwan, August 30-September 1, 2019, pp. 140-145, DOI: 10.1109/ICEA.2019.8858305.
[16] Y. Huang, S. Li, C. Li, Y. T. Hou, and W. Lou, “A deep-reinforcement-learning-based approach to dynamic eMBB/URLLC multiplexing in 5G NR,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6439-6456, July 2020, DOI: 10.1109/JIOT.2020.2978692.
[17] Y. Ohta, R. Takechi, H. Takahashi, and R. Atsuta, “NR-WLAN aggregation: Architecture for supporting URLLC in 5G IoT networks,” in Proc. IEEE Vehicular Technology Conference, Antwerp, Belgium, May 25-28, 2020, pp. 1-5, DOI: 10.1109/VTC2020-Spring48590.2020.9128745.
[18] ITU, “IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond,” Recommendation ITU-R M.2083-0, September 2015. [Online]. Available: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf, Accessed on: December 13, 2020.
[19] A. K. Bachkaniwala, V. Dhanwani, S. S. Charan, D. Rawal, and S. K. Devar, “IMT-2020 evaluation of EUHT radio interface technology,” in Proc. IEEE 5G World Forum, Bangalore, India, September 10-12, 2020, pp. 631-636, DOI: 10.1109/5GWF49715.2020.9221023.
[20] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065-1082, June 2014, DOI: 10.1109/JSAC.2014.2328098.
[21] B. Akshita, “Modulation schemes for future 5G cellular networks,” International Journal of Computer Networks and Wireless Communications, vol. 8, no. 1, pp. 16-22, January 2018.
[22] D. Soldani, “5G beyond radio access: A flatter sliced network,” Mondo Digitale, vol. 17, no. 74, pp. 1-20, March 2018.
[23] 3GPP, “System Architecture for the 5G System; Stage 2,” The 3rd Generation Partnership Project (3GPP).
[24] 3GPP, “Study on New Radio (NR) Access Technology,” The 3rd Generation Partnership Project (3GPP).
[25] 3GPP, “5G NR; User Equipment (UE) Radio Transmission and Reception,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.101-1, June 2021, version 15.14.0.
[26] 3GPP, “5G NR; Base Station (BS) Radio Transmission and Reception,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.104, April 2019, version 15.4.0.
[27] 3GPP, “5G NR; Physical Layer; General Description,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.201, September 2018, version 15.0.0.
[28] 3GPP, “5G NR; Services Provided by the Physical Layer,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.202, July 2018, version 15.2.0.
[29] 3GPP, “5G NR; Physical Channels and Modulation,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.211, April 2019, version 15.4.0.
[30] 3GPP, “5G NR; Multiplexing and Channel Coding,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.212, April 2019, version 15.4.0.
[31] 3GPP, “5G NR; Physical Layer Procedures for Control,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.213, April 2019, version 15.4.0.
[32] 3GPP, “5G NR; NR; Physical Layer Procedures for Data,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.214, April 2019, version 15.4.0.
[33] 3GPP, “5G NR; Physical Layer Measurements,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.215, April 2019, version 15.4.0.
[34] 3GPP, “5G NR; Radio Resource Control (RRC); Protocol Specification,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.331, April 2019, version 15.4.0.
[35] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on Architecture for Next Generation System,” The 3rd Generation Partnership Project (3GPP), Technical Report (TR) 23.799, November 2016, version 2.0.0.
[36] S. Namba, T. Warabino, and S. Kaneko, “BBU-RRH switching schemes for centralized RAN,” in Proc. International Conference on Communications and Networking in China, Kun Ming, China, August 8-10, 2012, pp. 762-766, DOI: 10.1109/ChinaCom.2012.6417586.
[37] O-RAN Alliance, “O-RAN Fronthaul Working Group Control, User and Synchronization Plane Specification,” The Open Radio Access Network(O-RAN) Alliance, Technical Specification ORAN-WG4.CUS.0, August 2019, version 2.0.
[38] CPRI Alliance, “eCPRI Specification; Common Public Radio Interface: eCPRI Interface Specification,” Common Public Radio Interface (CRPI), Interface Specification, May 2019, version 2.0.0.
[39] L. Chiaraviglio, L. Amorosi, N. Blefari-Melazzi, P. Dell’Olmo, C. Natalino, and P. Monti, “Optimal design of 5G networks in rural zones with UAVs, optical rings, solar panels and batteries,” in Proc. International Conference on Transparent Optical Networks, Bucharest, Romania, July 1-5, 2018, pp. 1-4, DOI: 10.1109/ICTON.2018.8473712.
[40] S. Moon, S. Kwon, H. Kim, B. Song, and I. Hwang, “NSC data detection scheme in NR-based communications system,” in Proc. International Conference on Electronics, Information, and Communication, Auckland, New Zealand, January 22-25, 2019, pp. 1-5, DOI: 10.23919/ELINFOCOM.2019.8706356.
[41] E. Garro, M. Fuentes, J. L. Carcel, H. Chen, D. Mi, F. Tesema, J. J. Gimenez, and D. Gomez-Barquero, “5G mixed mode: NR multicast-broadcast services,” IEEE Transactions on Broadcasting, vol. 66, no. 2, pp. 390-403, June 2020, DOI: 10.1109/TBC.2020.2977538.
[42] R. R. Olson, “The airborne open system interconnection data link test facility,” in Proc. IEEE/AIAA Digital Avionics Systems Conference, Seattle, WA, USA, October 5-8, 1992, pp. 509-513, DOI: 10.1109/DASC.1992.282109.
[43] Y. Li, D. Li, W. Cui, and R. Zhang, “Research based on OSI model,” in Proc. IEEE International Conference on Communication Software and Networks, Xi’an, China, May 27-29, 2011, pp. 554-557, DOI: 10.1109/ICCSN.2011.6014631.
[44] 3GPP, “5G NR; Physical layer; General description,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.201, December 2017, version 15.0.0.
[45] 3GPP, “Study on New Radio Access Technology; Physical Layer Aspects,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.802, September 2017, version 14.2.0.
[46] 3GPP, “Study on New Radio Access Technology; Radio access architecture and interfaces,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.801, March 2017, version 14.0.0.
[47] 3GPP, “Study on New Radio Access Technology; Radio Interface Protocol Aspects,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.804, March 2017, version 14.0.0.
[48] 3GPP, “Study on physical layer enhancements for NR ultra-reliable and low latency case (URLLC),” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.824, February 2019, version 1.0.1.
[49] “ShareTechnote,” [Online]. Available: http://www.sharetechnote.com/, Accessed on: December 13, 2020.
[50] X. Wei, H. Liu, Z. Geng, K. Zheng, R. Xu, Y. Liu, and P. Chen, “Software defined radio implementation of a non-orthogonal multiple access system towards 5G,” IEEE Access, vol. 4, pp. 9604-9613, December 2016, DOI: 10.1109/ACCESS.2016.2634038.
[51] F. Kaltenberger, R. Ghaffar, and R. Knopp, “Low-complexity distributed MIMO receiver and its implementation on the OpenAirInterface platform,” in Proc. Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, September 13-16, 2009, pp. 2494-2498, DOI: 10.1109/PIMRC.2009.5449726.
[52] N. Nguyen, R. Knopp, N. Nikaein, and C. Bonnet, “Implementation and validation of multimedia broadcast multicast service for LTE/LTE-advanced in OpenAirInterface platform,” in Proc. Annual IEEE Conference on Local Computer Networks - Workshops, Sydney, NSW, Australia, October 21-24, 2013, pp. 70-76, DOI: 10.1109/LCNW.2013.6758500.
[53] R. Wang, Y. Peng, H. Qu, W. Li, H. Zhao, and B. Wu, “OpenAirInterface-an effective emulation platform for LTE and LTE-Advanced,” in Proc. International Conference on Ubiquitous and Future Networks, Shanghai, China, July 8-11, 2014, pp. 127-132, DOI: 10.1109/ICUFN.2014.6876765.
[54] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and C. Bonnet, “OpenAirInterface: A flexible platform for 5G research,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 33–38, October 2014, DOI: 10.1145/2677046.2677053.
[55] A. Virdis, N. Iardella, G. Stea, and D. Sabella, “Performance analysis of OpenAirInterface system emulation,” in Proc. International Conference on Future Internet of Things and Cloud, Rome, Italy, August 24-26, 2015, pp. 662-669, DOI: 10.1109/FiCloud.2015.77.
[56] Y. Y. Chun, M. H. Mokhtar, A. A. A. Rahman, and A. K. Samingan, “Performance study of LTE experimental testbed using OpenAirInterface,” in Proc. International Conference on Advanced Communication Technology, Pyeongchang, South Korea, January 31-February 3, 2016, pp. 617-622, DOI: 10.1109/ICACT.2016.7423494.
[57] “Home·Wiki·oai/openairinterface5G·Gitlab,” [Online]. Available: https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/home, Accessed on: December 13, 2020.H. Shen, X. Wei, H. Liu, Y. Liu, and K. Zheng, “Design and implementation of an LTE system with multi-thread parallel processing on OpenAirInterface platform,” in Proc. IEEE Vehicular Technology Conference, Montreal, QC, Canada, September 18-21, 2016, pp. 1-5, DOI: 10.1109/VTCFall.2016.7880957.
[58] M. A. N. Al-hayanni, F. Xia, A. Rafiev, A. Romanovsky, R. Shafik, and A. Yakovlev, “Amdahl’s law in the context of heterogeneous many-core systems – a survey,” IET Computers & Digital Techniques, vol. 14, no. 4, pp. 133-148, June 2020, DOI: 10.1049/iet-cdt.2018.5220.
[59] S. Han, Y. Yun, and Y. H. Kim, “Profiling-based task graph extraction on multiprocessor system-on-chip,” in Proc. IEEE Asia Pacific Conference on Circuits and Systems, Jeju, South Korea, October 25-28, 2016, pp. 510-513, DOI: 10.1109/APCCAS.2016.7804016.
[60] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of the ACM, vol. 31, no. 5, pp. 532-533, May 1988.
[61] K. Vipin and S. A. Fahmy, “FPGA dynamic and partial reconfiguration: a survey of architectures methods and applications,” ACM Computing Surveys, vol. 51, no. 4, pp. 1-39, July 2018. DOI: 10.1145/3193827
[62] A. Aalsaud, A. Rafiev, F. Xia, R. Shafik, and A. Yakovlev, “Model-free runtime management of concurrent workloads for energy-efficient many-core heterogeneous systems,” in Proc. International Symposium on Power and Timing Modeling, Optimization and Simulation, Platja d’Aro, Spain, July 2-4, 2018, pp. 206-213, DOI: 10.1109/PATMOS.2018.8464142

無法下載圖示 全文公開日期 2023/08/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE