簡易檢索 / 詳目顯示

研究生: 楊明勳
Ming-Shiun Yang
論文名稱: 光電污泥磷與微量元素萃取之研究
Leaching of phosphorus and trace elements from TFT-LCD waste sludge
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 顧洋
Young Ku
林正芳
Cheng-Fang Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 117
中文關鍵詞: 萃取污泥薄膜液晶顯示器毒性特性溶出程序微量元素
外文關鍵詞: leaching, phosphorus, sludge, TCLP, TFT-LCD, trace elements
相關次數: 點閱:611下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

薄膜液晶顯示器工業產生大量的汙泥。此研究的目的為透過定性與定量分析來了解乾燥後與鍛燒後污泥的性質並探討利用硝酸萃取污泥中磷與微量元素的可行性。實驗結果說明了當利用0.5 N 或1.0 N 的硝酸進行萃取時,磷、鈣與微量元素(除了鉬之外)都可以被完全的萃取出來。此外,萃取的效率會隨著液固比的增加而增加,然而萃取的效率卻不隨著溫度的增加而發生任何的改變。
X光螢光分析結果顯示污泥與鍛燒後的污泥其組成成分並無太大的差異,大部分的成分為鈣、磷與鉀。從場發射式電子顯微鏡的結果得知,污泥大都由不規則的晶體所組成且為無定型相。X光繞射分析指出較顯著的成分為氟化鈣 (CaF2)、氫氧基磷灰石 (Ca10(PO4)6(OH)2, hydroxyapatite) 與氟磷灰石 (Ca10(PO4)6F2, flourapatite)。毒性特性溶出程序的結果指出不管是污泥或鍛燒後的污泥所含傳統重金屬,如銅、鋅,其對環境與人體的風險都相當低;然而,微量元素,如鍶、鉬、鉭等濃度偏高,其風險值得進一步研究。


This study investigated the qualitative and quantitative of sludge before and after sintering as well as the leaching of phosphorus and trace elements from phosphorus-containing sludge from thin-film transistor liquid crystal display (TFT-LCD) manufacturing using nitric acid. Leaching percentage of phosphorus, calcium and trace elements (except for Mo) were nearly 100% when using 0.5 N nitric acid or 1.0 N nitric acid. In addition, the leaching percentage increased with increasing liquid-solid ratios. The leaching process was not significantly affected by temperature.
The XRF results showed that the chemical compositions of dried and sintered sludge were similar, mostly composed of phosphorus, calcium and potassium. XRD analysis showed that the dominant phase was hydroxyapatite (HAP), flourapatite (FAP), and calcium fluoride (CaF2). TCLP results indicated that both dried and sintered sludge were not hazardous. However, high concentrations of strontium, molybdenum and tantalum were found, and their risks to the environment and human health deserve further research and assessment.

CHINESE ABSTRACT I ABSTRACT II ACKNOWLEDGEMENTS III CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII CHAPTER 1 Introduction 1.1 Background 1 1.2 Objective 2 CHAPTER 2 Literature Review 2.1 TFT-LCD manufacturer 3 2.1.2 TFT-LCD wastewater and waste sludge 4 2.2 Phosphorus industry 5 2.2.1 Thermal processes 5 2.2.2 Wet processes 6 2.3 Phosphorus and phosphate rock 9 2.4 Reclamation and reuse of sludge 10 2.4.1 The guidelines of heavy metals for sludge in agriculture uesd 14 2.4.2 The use and toxicity of trace elements 15 CHAPTER 3 Materials and Methods 3.1 Source of the TFT-LCD sludge 20 3.2 Materials 20 3.3 Equipments and instruments 22 3.4 Experiment procedures 23 3.4.1 Characterization of TFT-LCD sludge 23 3.4.2 Pretreatment of TFT-LCD sludge 26 3.4.3 Experimental procedures 26 3.5 Analysis procedure 28 3.5.1 Aqua-regia digestion 28 3.5.2 Total solid (TS), Fixed Solid (FS) and Volatile solid (VS) 28 3.5.3 X-ray diffraction 29 3.5.4 Field emission scanning electron microscopy (FESEM) and energy dispersive x- ray spectrometer (EDX) analysis 29 3.5.5 Water content-weight method 30 3.5.6 Standard test method - organic carbon 30 3.5.7 Toxicity characteristic leaching procedure (TCLP) 31 CHAPTER 4 Results and Discussion 4.1. The characteristic of dried sludge and sintered sludge 33 4.2. Wet process 45 4.2.1 Aqua-regia digestion 45 4.2.2 Leaching experiment 47 CHAPTER 5 Conclusions and Suggestions 5.1. Conclusions 81 5.2. Suggestions 82 REFERENCES 83 APPENDIX A : Quality Assurance and Quality Control of ICP-AES 92 APPENDIX B 97

巫鴻章、林畢修平、董金龍、陳睿斌、蔡明珊,「高效率有機污泥生物減量技術
開發」,(2005) (http://www.ctci.org.tw/public/Data/510199385171.pdf).

Abouzeid, A.-Z.M. (2008). Physical and thermal treatment of phosphate ores - An overview. International Journal of Mineral Processing, 85(4), pp. 59-84.

Aly, M.M. and Mohammed, N.A. (1999). Recovery of lanthanides from Abu Tartur phosphate rock, Egypt. Hydrometallurgy, 52(2), pp. 199-206.

Anderson, M. (2002). Encouraging prospects for recycling incinerated sewage sludge ash (ISSA) into clay-based building products. Journal of Chemical Technology and Biotechnology, 77(3), pp. 352-360.
APHA, AWWA, and WEF. (1995). Standard Methods for the Examination of Water
and Wastewater. 19th edition, Washington, DC, USA.

Babel, S. and del Mundo Dacera, D. (2006). Heavy metal removal from contaminated sludge for land application: A review. Waste Management, 26(9), pp. 988-1004.

Bayramoglu, M., Demircilólu, N. and Tekin, T. (1995). Dissolution kinetics of Mazidagi phosphate rock in HNO3 solution. International Journal of Mineral Processing, 43(3-4), pp. 249-254.

Bethencourt, M., Botana, F.J., Calvino, J.J., Marcos, M. and Rodríguez-Chacón, M.A. (1998). Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: A review. Corrosion Science, 40(11), pp. 1803-1819.

Biswas, B.K., Inoue, K., Harada, H., Ohto, K. and Kawakita, H. (2009). Leaching of phosphorus from incinerated sewage sludge ash by means of acid extraction followed by adsorption on orange waste gel. Journal of Environmental Sciences, 21(12), pp. 1753-1760.

Chang, C.A., Pan, G., Page, L.A. and Asano, T. (2002). Developing Human Health-related Chemical Guidelines for Reclaimed Wastewater and Sewage Sludge Applications in Agriculture. (http://www.who.int/en/).

Chang, C.-Y., Wang, C.-F., Mui, D.T., Cheng, M.-T. and Chiang, H.-L. (2009). Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan. Journal of Hazardous Materials, 165(1-3), pp. 766-773.

Chang, S.-C. (2005). The TFT-LCD industry in Taiwan: Competitive advantages and future developments. Technology in Society, 27(2), pp. 199-215.

Chen, K.S., Wang, C.H. and Chen, H.T. (2006). A MAIC approach to TFT-LCD panel quality improvement. Microelectronics Reliability, 46(7), pp. 1189-1198.

Chou, W.-L. and Huang, Y.-H. (2009). Electrochemical removal of indium ions from aqueous solution using iron electrodes. Journal of Hazardous Materials, 172(1), pp. 46-53.
Chou, W.-L. and Yang, K.-C. (2008). Effect of various chelating agents on supercritical carbon dioxide extraction of indium(III) ions from acidic aqueous solution. Journal of Hazardous Materials, 154(1-3), pp. 498-505.

Chowdhury, M.J. and Blust, R. (2001). Effect of temperature on the uptake of waterborne strontium in the common carp, Cyprinus carpio (L.). Aquatic Toxicology, 54(3-4), pp. 151-160.

Demirbaş, A., Abali, Y. and Mert, E. (1999). Recovery of phosphate from calcinated bone by dissolution in hydrochloric acid solutions. Resources, Conservation and Recycling, 26(3-4), pp. 251-258.

Dweck, J., Morais, L.C., Fonseca, M.V.A., Campos, V., Büchler, P.M. (2008). Calcined sludge sintering evaluation by heating microscopy thermal analysis. Journal of Thermal Analysis and Calorimetry, pp. 1-5.

Ekholm, P. and Krogerus, K. (1998). Bioavailability of phosphorus in purified municipal wastewaters. Water Research, 32(2), pp. 343-351.

Feyerabend, F., Fischer, J., Holtz, J., Witte, F., Willumeit, R., Drücker, H., Vogt, C. and Hort, N. (2009). Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomaterialia,. Article in Press.

Franz, M. (2008). Phosphate fertilizer from sewage sludge ash (SSA). Waste Management, 28(10), pp. 1809-1818.
Habashi, F. (1985). Recovery of the lanthanides from phosphate rock. Journal of chemical technology and biotechnology. Chemical technology, 35A(1), pp. 5-14.

Hansen, B., Karlsson, I., Cassidy, S. and Pettersson, L. (2000). Operational experiences from a sludge recovery plant. Water Science and Technology, 41(8), pp. 23-30.

Hong, K.-J., Tarutani, N., Shinya, Y. and Kajiuchi, T. (2005). Study on the recovery of phosphorus from waste-activated sludge incinerator ash. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 40(3), pp. 617-631.

He, X., Zhang, Z., Zhang, H., Zhao, Y. and Chai, Z. (2008). Neurotoxicological evaluation of long-term lanthanum chloride exposure in rats. Toxicological Sciences, 103(2), pp. 354-361.

Hjelmar, O., Holm, J. and Crillesen, K. (2007). Utilisation of MSWI bottom ash as sub-base in road construction: First results from a large-scale test site. Journal of Hazardous Materials, 139(3), pp. 471-480.

Jorjani, E., Bagherieh, A.H., Mesroghli, Sh. and Chelgani, S.C. (2008). Prediction of yttrium, lanthanum, cerium, and neodymium leaching recovery from apatite concentrate using artificial neural networks. Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials, 15(4), pp. 367-374.

Kabiri, M., Amoozegar, M.A., Tabebordbar, M., Gilany, K. and Salekdeh, G.H. (2009). Effects of selenite and tellurite on growth, physiology, and proteome of a moderately halophilic bacterium. Journal of Proteome Research, 8(6), pp. 3098-3108.

Kobayashi, A. and Ogra, Y. (2009). Metabolism of tellurium, antimony and germanium simultaneously administered to rats. Journal of Toxicological Sciences, 34(3), pp. 295-303.

Koopman, C. and Witkamp, G.J. (2002). Ion exchange extraction during continuous recrystallization of CaSO4 in the phosphoric acid production process: Lanthanide extraction efficiency and CaSO4 particle shape. Hydrometallurgy, 63(2), pp. 137-147.

Koopman, C. and Witkamp, G.J. (2000). Extraction of lanthanides from the phosphoric acid production process to gain a purified gypsum and a valuable lanthanide by-product. Hydrometallurgy, 58(1), pp. 51-60.

Koopman, C., Witkamp, G.J. and Van Rosmalen, G.M. (1999). Removal of heavy metals and lanthanides from industrial phosphoric acid process liquors. Separation Science and Technology, 34(15), pp. 2997-3008.

Kosson, D.S., Van Der Sloot, H.A. and Eighmy, T.T. (1996). An approach for estimation of contaminant release during utilization and disposal of municipal waste combustion residues. Journal of Hazardous Materials, 47(1-3), pp. 43-75.

Levlin, E., Löwén, M., Stark, K., Hultman, B. (2002). Effects of phosphorus recovery requirements on Swedish sludge management. Water Science and Technology, 46 (4-5), pp. 435-440.

Li, J., Zhou, L. and Li, Z. (2010). Corrosion behaviors of a new titanium alloy TZNT for surgical implant application in Ringer's solution. Rare Metals, 29(1), pp. 37-44.

Lin, K.-L., Chiang, K.-Y. and Lin, D.-F. (2006). Effect of heating temperature on the sintering characteristics of sewage sludge ash. Journal of Hazardous Materials, 128(2-3), pp. 175-181.

Liu, H.-M., Wu, C.-C., Lin, Y.-H. and Chiang, C.-K. (2009). Recovery of indium from etching wastewater using supercritical carbon dioxide extraction. Journal of Hazardous Materials, 172(2-3), pp. 744-748.

Morse, G.K., Brett, S.W., Guy, J.A. and Lester, J.N. (1998). Review: Phosphorus removal and recovery technologies. Science of the Total Environment, 212(1), pp. 69-81.

Nagib, S. and Inoue, K. (2000). Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching. Hydrometallurgy, 56(3), pp. 269-292.

Namasivayam, C. and Sureshkumar, M.V. (2009). Removal and recovery of molybdenum from aqueous solutions by adsorption onto surfactant-modified coir pith, a lignocellulosic polymer. Clean - Soil, Air, Water, 37(1), pp. 60-66.

Nishitani, T., Shimada, M., Kuroda, K. and Ueda, M. (2010). Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Applied Microbiology and Biotechnology, 86(2), pp. 641-648.

Ogra, Y. (2009). Toxicometallomics for research on the toxicology of exotic metalloids based on speciation studies. Analytical Sciences, 25(10), pp. 1189-1195.
Özgür, S., Sümer, H. and Koçoǧlu, G. (1996). Rickets and soil strontium. Archives of Disease in Childhood, 75(6), pp. 524-526.

Pettersson, A., Åmand, L.-E. and Steenari, B.-M. (2008). Leaching of ashes from co-combustion of sewage sludge and wood-Part I: Recovery of phosphorus. Biomass and Bioenergy, 32(3), pp. 224-235.

Rheem, Y., Chang, C.H., Hangarter, C.M., Park, D.-Y., Lee, K.-H., Jeong, Y.-S. and Myung, N.V. (2010). Synthesis of tellurium nanotubes by galvanic displacement. Electrochimica Acta, 55(7), pp. 2472-2476.

Skoog, D.A. and Leary J.J. (1992). PRINCIPLES OF INSTRUMENTAL ANALYSIS, 4th ed., Saunders College Publishing, Orlando, U.S.A..

Usami, M., Nakajima, M., Mitsunaga, K., Miyajima, A., Sunouchi, M. and Doi, O. (2009). Proteomic analysis of indium embryotoxicity in cultured postimplantation rat embryos. Reproductive Toxicology, 28(4), pp. 477-488.

US EPA, 1992. Test Methods for Evaluating Solid Waste Physical / Chemical Methods, SW - 846 3rd Ed. Method 1311.
Usuda, K., Kono, K., Dote, T., Watanabe, M., Shimizu, H., Tanimoto, Y. and Yamadori, E. (2007). An overview of boron, lithium, and strontium in human health and profiles of these elements in urine of Japanese. Environmental Health and Preventive Medicine, 12(6), pp. 231-237.

Valsami-Jones, E. (2004). Phosphours in Environmental Technology:Principle and applications, pp. 339-357. IWA Publishing:London.

Vutova, K., Vassileva, V., Koleva, E., Georgieva, E., Mladenov, G., Mollov, D. and Kardjiev, M. (2010). Investigation of electron beam melting and refining of titanium and tantalum scrap. Journal of Materials Processing Technology, 210(8), pp. 1089-1094.

Wzorek, Z., Jodko, M., Gorazda, K. and Rzepecki, T. (2006). Extraction of phosphorus compounds from ashes from thermal processing of sewage sludge. Journal of Loss Prevention in the Process Industries, 19(1), pp. 39-50.

Xenakis, T.A., MacHeras, G.A., Stafilas, K.S., Kostakos, A.T., Bargiotas, K. and Malizos, K.N. (2009). Multicentre use of a porous tantalum monoblock acetabular component. International Orthopaedics, 33(4), pp. 911-916.

Xu, H. and Xu, H.-E. (2009). Analysis of trace elements in Chinese therapeutic foods and herbs. American Journal of Chinese Medicine, 37(4), pp. 625-638.

Xue, Y., Hou, H., Zhu, S. and Zha, J. (2009). Utilization of municipal solid waste incineration ash in stone mastic asphalt mixture: Pavement performance and environmental impact. Construction and Building Materials, 23(2), pp. 989-996.

Zeng, L. and Cheng, C.Y. (2009). A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts. Part I: Metallurgical processes. Hydrometallurgy, 98(1-2), pp. 1-9.

Zhang, F.-S., Yamasaki, S.-I. and Nanzyo, M. (2001). Application of waste ashes to agricultural land - Effect of incineration temperature on chemical characteristics. Science of the Total Environment, 264(3), pp. 205-214.

Zhang, F.-S., Yamasaki, S. and Kimura, K. (2002). Waste ashes for use in agricultural production: II. Contents of minor and trace metals. Science of the Total Environment, 286(1-3), pp. 111-118.

QR CODE