簡易檢索 / 詳目顯示

研究生: 洪健哲
Chien-Che Hung
論文名稱: 藍藻蛋白接枝透明質酸製備多孔性支架
Cyanophycin grafted hyaluronic acid to prepare porous 3D scaffold
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 何郡軒
Jinn-Hsuan Ho
方翠筠
Tsuei-Yun Fang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 49
中文關鍵詞: 藍藻蛋白透明質酸立體孔洞支架
外文關鍵詞: cyanophycin, hyaluronic acid, porous 3D scaffold
相關次數: 點閱:544下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藍藻蛋白(cyanophycin)是一種非核醣體合成的蛋白質,於西元1887年由Borzi在顯微鏡下觀察藍綠藻菌時首次發現。
    由於以藍綠藻生產藍藻蛋白的產率偏低,因此我們將大腸桿菌進行基因改質,使其含有藍藻蛋白合成酶的基因,並以IPTG or 乳糖進行誘導,藉此來提升藍藻蛋白的產率,天然的藍藻蛋白是以天門冬胺酸 (aspartic acid, Asp) 與精胺酸 (arginine, Arg) 以1 : 1之比例組成,而改質後的藍藻蛋白則是以天門冬胺酸 (aspartic acid, Asp) 與精胺酸 (arginine, Arg)賴胺酸(lysine, Lys)比例5:2:3組成。
    有鑑於於藍藻蛋白其機械強度不高且在生醫材料上的應用上尚不普遍,本實驗試著以水溶性藍藻蛋白,與具備優良生物相容性的透明質酸進行接枝改質,期待改質後的產物可有效提升機械強度,並有助於細胞的生長。
    本實驗透過戊二醛與1-(3-二甲氨基丙基)-3-乙基碳二亞胺作為交聯劑,接枝後的產物可藉由藍藻蛋白上的胺基形成3D立體支架, 並以螢光染色法證實,中國倉鼠卵巢(Chinese hamster ovary, CHO)細胞能貼附在此支架上。
    綜合以上,藍藻蛋白接枝透明質酸的立體支架而後將有助於模擬細胞在生物體上生長之情形,甚至可能對細胞生長有益處。


    Cyanophycin granule polypeptide (CGP) is a non-ribosomal protein synthesis, first found in 1887 BC when Borzi observed the Cyanobacteria under a microscope.
    Because the yield rate of CGP is too low by culturing Cyanobacteria, we implant the cyanophycin synthetase gene of Cyanobacteria into Escherichia coli (E. coli) and use Isopropyl β-D-1-thiogalactopyranoside (IPTG) or Lactose induction to increase the yield rate. Nature CGP consist of aspartic acid (Asp) and arginine (Arg) in ratio 1:1, but recombicant CGP consist of Asp, Arg, and lysine (Lys) in ratio 5:2:3.
    Due to its mechanical strength CGP is not popular biomaterials. this experiment use water-soluble CGP to graft hyaluronic acid with excellent biocompatibility ,and expect that modification can effectively enhance both the mechanical strength and the growth of cells.
    By glutaraldehyde and 1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide(EDC)/N-hydroxysulfosuccinimide(NHS) cross-linking, we use Lys group in CGP to produce HA-CGP 3D scaffold.The 3D scaffold which were observed under a fluorescence microscopy after fluorescence staining were proved that cell could adhesion on this 3D scaffold.
    In conclusion, the scaffold could simulate cell growth in vivo, and could help cell growth.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 一、緒論 1 前言 1 二、文獻回顧 2 2.1 藍藻蛋白簡介 2 2.1.1 藍藻蛋白的由來 2 2.1.2 藍藻蛋白結構 2 2.1.3 藍藻蛋白特性 4 2.1.4 藍藻蛋白未來應用的趨勢4 2.2 SDS-PAGE 4 2.3 透明質酸簡介 5 2.4 戊二醛交聯反應 7 2.5 碳二亞胺交聯反應 7 2.6 螢光染色法 10 2.6.1 9,10–菲醯(9,10-phenanthrenequinone)染劑 10 2.6.2 赫斯特33342螢光染劑(Hoechst 33342) 11 三、實驗 12 3.1 藥品清單 12 3.2 藥品配置 14 3.2.1 菌株培養 14 3.2.2 SDS-PAGE 16 3.2.2.3 20% APS (ammonium persulfate) 16 3.2.2.4 10% SDS (sodium dodecyl sulfate) 16 3.2.2.5 5% SDS-PAGE (上層) 16 3.2.6 螢光染色法 19 3.2.7 1M磷酸鈉緩衝溶液(sodium phosphate buffer)pH=6 19 3.3 實驗儀器 20 3.4 實驗步驟 21 3.4.1 菌株培養 21 3.4.2 SDS-PAGE(菌株) 23 3.4.3 純化藍藻蛋白 25 3.4.4 SDS-PAGE(蛋白質) 27 3.4.5 將水溶性藍藻蛋白與透明質酸接枝形成3D支架 28 3.4.6 螢光染色法 29 四、實驗結果與討論 31 4.1 大腸桿菌發酵培養 31 4.2 藍藻蛋白質純化 31 4.3 將水溶性性藍藻蛋白與透明質酸進行接枝 32 4.4 戊二醛交聯反應形成3D scaffold 32 4.5 螢光染色 32 五、結論 33 參考文獻 34 圖表 37

    1. 張維仁, 高分子材料暨其他生醫材料 相容性及安全性為首要考量. 2002.
    2. A. Borzi, Le comunicazioni intracellulari delle Nostochinee. 1987. 1: p. 174-203
    3. M.E. Dembinska and M.M. Allen, Cyanophycin Granule Size Variation in Aphanocapsa. General Microbiology, 1988. 134: p. 295-298.
    4. M. Schwamborn , Chemical synthesis of polyaspartates: a biodegradable alternative to currently used polycarboxylate homo- and copolymers. Polymer Degradation and Stability, 1998. 59(1-3): p. 39-45
    5. R.D. Simon and P. Weathers, Determination of the structure of the novel polypeptide contaning aspartic acid and arginine which is found in cyanobacteria. Biochimaca et Biophysia Acta, 1976. 420(1): p. 165-176.
    6. A. Steinle, K. Bergander, and A. Steinbüchel, Metabolic engineering of Saccharomyces cerevisiae towards novel cyanophycins with an extended range of constituent amino acids. Environ. Microbiol., 2009. 75: p. 3437–3446.
    7. M. Frommeyer, K. Bergander, and A. Steinbüchel, Guanidination of soluble lysine-rich cyanophycin yields a homoarginine containing polyamide. Applied and Environmental Microbiology, 2014. 80(8): p. p. 2381-28319
    8. K.M. Frey, et al., Technical-Scale Production of Cyanophycin with Recombinant Strains of Escherichia coli. Applied and Environmental Microbiology, 2002. 68(7): p. 3377-3384.
    9. Mooibroek, H., et al., Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Applied Microbiology and Biotechnology, 2007. 72(2): p. 257-267
    10. A.I.D. Andres-Santos, et al., Thermal behaviour of aqueous solutions of sodium hyaluronate from different commercial sources. 1994. 242: p. 153–160.
    11. A.W. Rutjes, et al., Viscosupplementation for osteoarthritis of the knee: a systematic review and meta-analysis. Annals of Internal Medicine, 2012. 157(3): p. 181-191.
    12. K.A. Smeds, et al., Photocrosslinkable polysaccharides for in situ hydrogel formation. Journal of Biomedical Materials Research, 2001. 54(1): p. 115-121.
    13. Y.D. Park, N. Tirelli, and J.A. Hubbell, Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials, 2003. 24(6): p. 893-900.
    14. X.Z. Shu, et al., Attachment and spreading of fibroblast on an RGD peptide-modified injectable hyaluronan hydrogel. Journal of Biomedical Materials Research 2004. 68: p. 365-375.
    15. K. Meyer, et al., The hydrolysis of hyaluronic acid by bacterial enzymes. Journal of Experimental Medicine, 1940. 71: p. 137–146.
    16. H. Saari, et al., Differential effects of reactive oxygen species on native synovial fluid and purified human umbilical cord hyaluronate. inflammation, 1993. 17: p. 403-415
    17. J.A. Kiernan, Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: What they are and what they do. Microscopy Today, 2000. 1: p. 8-12.
    18. G.T. Hermanson, Bioconjugate Techniques Zero-Length Crosslinkers. 2013. (Third Edition) chapter4: p. 259-266.
    19. B.E. Magun and J.W. Kelly, A new fluorescent method with phenanthrenequininone for the histochemical demonstration of arginine residue in tissues. Journal of Histochemistry & Cytochemistry, 1969. 17(12): p. 821-827.
    20. G. Cosa, et al., Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution. Photochem Photobiol 2001. 13: p. 585-599
    21. S.-Y. Choh, D. Cross, and C. Wang, Facile Synthesis and Characterization of Disulfide-Cross-Linked Hyaluronic Acid Hydrogels for Protein Delivery and Cell Encapsulation. Biomacromolecules, 2011. 12 (4): p. 1126–1136.

    無法下載圖示 全文公開日期 2020/07/31 (校內網路)
    全文公開日期 2045/07/31 (校外網路)
    全文公開日期 2045/07/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE