簡易檢索 / 詳目顯示

研究生: 黃世昌
Shih-chung Huang
論文名稱: 藍藻蛋白之物理特性分析及生物相容性測試
The analysis of physical properties of recomninant cyanophycin
指導教授: 曾文祺
Wen-chi Tseng
口試委員: 陳燿騰
Yao-teng Chen
林松池
Sung-chih Lin
方翠筠
Tsui-yun Fang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 93
中文關鍵詞: 藍藻蛋白相容性物理特性免疫
外文關鍵詞: immune
相關次數: 點閱:215下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藍藻蛋白又稱藻青素,它是一種非核醣體合成的蛋白質。一百多年前由Borzi觀察藍綠藻所發現,其外觀為顆粒狀,藍藻蛋白的組成為等莫耳比的arginine與aspartic acid,以aspartic acid為骨架,以精胺酸的α-胺基與天門冬胺酸的β-羧基進行縮和反應。
    本實驗利用含Synechocystis sp. PCC6803的藍藻蛋白合成酶基因cphA,接上載體送入大腸桿菌所產的藍藻蛋白,利用所產的藍藻蛋白進行其物理化學分析、生物相容性的測試。其物理化學分析利用FTIR得知官能基,SEM觀察蛋白質與glutaraldehyde交聯後的表面情形,以及測試蛋白質交聯後是否會影響蛋白質吸附,並利用TGA及DSC測試水溶性與非水溶性藍藻蛋白的裂解點和熔點,觀察其熱穩定度。
    由物理測試實驗所得,FTIR所得數據中顯示水溶與非水溶藍藻蛋白都有胺基的官能基。但lysine上的C-N鍵呈現不同的吸收。蛋白質吸附實驗顯示glutaraldehyde交聯後並不會對蛋白質產生吸附。交聯後所得的膜在SEM觀測下4 %、6 %非水溶性藍藻蛋白膜有絲狀及片狀情況,2 %非水溶性藍藻蛋白呈現顆粒平滑狀況。TGA及DSC所測得在250 0C為可溶與不可溶裂解點,然而不可溶熔點大約
    170 oC~180 oC。
    本實驗利用Raw 264.7細胞對於非水溶性藍藻蛋白與glutaraldehyde交聯的薄膜以及水溶性藍藻蛋白薄膜的免疫反應測試,CHO cell 及Raw 264.7在非水溶性與水溶性藍藻蛋白分別與glutaraldehyde交聯後之薄膜上生長情況。由實驗顯示藍藻蛋白對Raw 264.7不會產生免疫反應,但細胞在高濃度下生長情況不太好,且細胞在交聯膜上會產生形態會變異。
    綜合以上藍藻蛋白含豐富的胺基以及熱穩定性對免疫細胞不會產生影響,只會影響到細胞貼附。


    Borzi found the cyanophycin by the observation of blue-green algae. Its appearance is granular and it is composed of the equimolar ratio aspartic acid and arginine. The backbone of cyanophycin is aspartic acid, and the side chain structure is composed arginine.
    In this study, we used E.coli which include Synechocystis sp. PCC6803 cyanobacteria protein synthase cphA to produce cyanophycin. Then the produced cyanophycin were used for physical and biocompatibility assays. We used FTIR to analyze the functional groups of cyanophycin, SEM to observe the surface which is cross linked by glutaraldehyde and cyanophycin, TGA and DSC to detect the thermal stability and melting point, and assay the protein adsorption.
    The results showed of protein adsorption experiment confirm no protein adsorption. The melting and recomposition points of soluble and insoluble cyanophycin are about 170~185 oC and 250 oC, respectively.
    In biocompatibility, we test the biological immune response and cell adhesion. The Raw 264.7 culture on the surface of insoluble cyanophycin cross-linked with glutaraldehyde and of soluble cyanophycin medium, and compare the toxicity with LPS stimulus. The final result, the insoluble cyanophycin cross-linked and sluble cyanophycin didn’t provoke the immune response. For CHO cell on the insoluble cross-linked surface and high concentration medium, the relative grow velocity is reduce, but for Raw 264.7 is near control.
    Summary, cyanophycin did’t provoke immune response, has good thermal stability, contain lots of amino group which can react easily for modification the characterization.

    目錄 中文摘要 I Abstract III 誌謝 V 目錄 VI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 藍藻蛋白 3 2.1.1 藍藻蛋白未來發展 5 2.2材質表面特性分析 6 2.2.1 蛋白質吸附 8 2.3 生物相容性 10 2.3.1生物相容性 10 2.3.2 MTT 毒性測試 12 2.3.3 Raw 264.7 巨噬細胞 13 2.3.4脂多醣LPS (Lipopolysaccharide) 13 2.3.5 NOx 定量測試 15 2.4 生醫材料 17 第三章 實驗 19 3.1實驗藥品 19 3.2 儀器 21 3.3 藥品、溶液配製 22 3.3.1 成膜2%可溶與不可溶藍藻蛋白溶液 22 3.3.2 成膜4%可溶與不可溶藍藻蛋白溶液 22 3.3.3 成膜6%可溶與不可溶藍藻蛋白溶液 22 3.3.4 LPS 溶液 23 3.3.5 Dubecco’s Modified Eagle’s medium(DMEM) low glucose 23 3.3.6 DMEM含10 % FBS培養液(low/high glucose) 23 3.3.7 可溶藍藻蛋白溶液 23 3.3.8 配製dye-binding reagent 24 3.3.9 2,3-DAN 24 3.3.10 Luria-Batani medium(LB) 24 3.3.11 Luria-Batani medium plate 24 3.3.12 Terrific Broth 25 3.3.13 MTT 25 3.3.14 胺芐西林(Ampicillin)儲存溶液 25 3.3.15 氯黴素儲存溶液 25 3.3.16 0.2M Cacodylic acid sodium 清洗液 26 3.3.17 SEM 固定液 26 3.3.18 Lysis buffer 26 3.3.19 電泳膠配製 26 1. 配製上層膠(separating gel):3.6 mL去離子水、3.8 mL 40% 26 3.4 實驗步驟 27 3.4.1 微生物培養 27 3.4.2 微生物轉養於2mL LB medium培養基 27 3.4.3 微生物轉養於70mL LB培養基 27 3.4.4 轉養於2L發酵槽 28 3.4.5 藍藻蛋白純化 30 3.4.6 水溶性藍藻蛋白純化 30 3.4.7 非水溶性藍藻蛋白純化 31 3.4.8 TGA 裂解點測試 36 3.4.9 DSC 熔點測試 36 3.4.10 非水溶性/水溶性藍藻蛋白成膜 36 3.4.11 非水溶性/水溶性藍藻蛋白成膜對CHO貼附生長實驗 38 3.4.12 蛋白質吸附實驗 39 3.4.13 藍藻蛋白膜低濃度下對CHO cell 貼附生長影響 39 3.4.14 水溶性藍藻蛋白對CHO cell生長影響 40 3.4.15非水溶性藍藻蛋白膜對Raw 264.7相容性測試 41 3.3.16 水溶性藍藻蛋白對Raw 264.7相容性測試 42 3.3.17 SEM 觀察細胞形態 43 3.3.18 LPS 誘導NOx release 43 第四章 實驗結果與討論 45 4.1 TGA 裂解點測試 45 4.2 DSC 熔點測試 45 4.3 FTIR官能基測試 46 4.4 蛋白質電泳 47 4.5 非水溶性/水溶性藍藻蛋白成膜 SEM表面觀察 47 4.6 非水溶性藍藻蛋白成膜對CHO cell貼附生長實驗 47 4.7 1 %、2 %、4 %非水溶性藍藻蛋白對CHO cell生長影響 48 4.8 血清蛋白吸附 49 4.9 0.5%藍藻蛋白膜對CHO cell生長影響 49 4.11 水溶性藍藻蛋白對CHO cell生長影響 50 4.12 LPS 誘導Raw 264.7 51 4.13 非水溶性藍藻蛋白膜對Raw 2647相容性測試 52 4.14水溶性藍藻蛋白對Raw 264.7相容性測試 53 4.15 CHO cell 與Raw 264.7在藍藻蛋白膜上比較 54 第五章 結論 81 參考文獻 83

    1. Simon, R.D., Cyanophycin granules from the blue-green alga Anabaena cylindrica: A reserve material consisting of copolymers of aspartic acid and arginine. Proceedings of the national academy of sciences, 1971: p. 265-267.
    2. MM, A. and W. PJ., Structure and composition of cyanophycin granules in the cyanobacterium Aphanocapsa 6308. J Bacteriol., 1980: p. 959-962.
    3. Lawry, N.H. and R.D. Simon, The normal and induced occurrence of cyanophycin inclision bodies in several blue-gree algae1. Journal of Phycology, 1982. 18(3): p. 391-399.
    4. Allen, M.M., Cyanobacterial Cell Inclusions. Annual Review of Microbiology, 1984. 38(1): p. 1-25.
    5. Wingard, L.L., S.R. Miller, J.M.L. Sellker, E. Stenn, M.M. Allen, and A.M. Wood, Cyanophycin Production in a Phycoerythrin-Containing Marine Synechococcus Strain of Unusual Phylogenetic Affinity. Applied and Environ. Microbiology., 2002. 68(4): p. 1772-1777.
    6. Mooibroek, H., N. Oosterhuis, M. Giuseppin, M. Toonen, H. Franssen, E. Scott, J. Sanders, and A. Steinbüchel, Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Applied Microbiology and Biotechnology, 2007: p. 257-267.
    7. Weather, R.D.S.a.P., Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in Cyanobacteria. Biochimica et Biophysica Acta, 1976: p. 165-176.
    8. Alisonh.Mackerrasn, O.L.D.C.d.G.S., Transient accumulations of cyanophycin in Anabaena cyZidkica and Syitechocystis 6308. Journal of General Microbiolog, 1990: p. 2057-2065.
    9. Karl Ziegler1, A.D., Carine Herpin1, Ralf Richter1, Rainer Deutzmann2 and Wolfgang Lockau1, Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin). European Journal of Biochemistry. , (1998): p. 154-159
    10. Holger Berg1, K.Z., Kirill Piotukh1, Kerstin Baier1, Wolfgang Lockau1 and Rudolf Volkmer-Engert2, Biosynthesis of the cyanobacterial reserve polymer multi-L-arginyl-poly-L-aspartic acid (cyanophycin) Mechanism of the cyanophycin synthetase reaction studied with synthetic primers. Eur. J. Biochem., 2000: p. 5561-5570.
    11. Tran Hai, F.B.O.-S., Alexander Steinbu«chel, Purification and characterization of cyanophycin and cyanophycinn synthetase from the thermophilic Synechococcus sp. MA19. FEMS Microbiology Letters, 1999: p. 229-236.
    12. Aboulmagd, E., F.B. Oppermann-Sanio, and A. Steinbuchel, Purification of Synechocystis sp. Strain PCC6308 cyanophycin synthetase and Its characterization with respect to substrate and primer specificity. Applied and Environmental Microbiology, 2001: p. 2176-2182.
    13. Steinbüchel, J.K.S.K.A., A novel plasmid addiction system for large-scale production of cyanophycin in Escherichia coli using mineral salts medium. Applied Microbiol Biotechnol, 2010.
    14. Daniela F. Coutinho, I.H.P., Catarina M. Alves, Alexandra P. Marques,Nuno M. Neves, and Rui L. Reis, The effect of chitosan on the In vitro biological performance of chitosan-poly(butylene succinate) blends. Biomacromolecules 2008: p. 1139–1145.
    15. Steinbüchel, M.O.A., Cyanophycin—an ideal bacterial nitrogen storage material with unique chemical properties. Microbiology Monographs, 2006: p. 168-187.
    16. You-Xiong Wang, 4 John L. Robertson,2 and J. William B. Spillman, 3 and Richard O. Claus1, Effects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility. Pharmaceutical Research, 2004: p. 1362-1373.
    17. Ma, L., G. Li, L. Li, and P. Liu, Synthesis and characterization of diethoxy phosphoryl chitosan. International Journal of Biological Macromolecules, 2010: p. 578-581.
    18. Abugoch, L.E., C. Tapia, M.C. Villamán, M. Yazdani-Pedram, and M. Díaz-Dosque, Characterization of quinoa protein–chitosan blend edible films. Food Hydrocolloids, 2011: p. 879-886.
    19. Daniela F. Coutinho, I.H.P., Catarina M. Alves, Alexandra P. Marques, Nuno M. Neves, and Rui L. Reis, The effect of chitosan on the In vitro biological performance of chitosan-poly(butylene succinate) blends. Biomacromolecules, 2008: p. 1139–1145.
    20. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Aanalytical Biochemistry, 1976: p. 248-254.
    21. Raju G. Kammula and Janine M. Morris,Considerations for the Biocompatibility Evaluation of Medical Devices,Medical Plastics and Biomaterials,2001
    22. M. Zhang, X.H.L., Y.D. Gong, N.M. Zhao, X.F. Zhang, Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials, 2002: p. 2641–2648.
    23. Cremasco, A., A.D. Messias, A.R. Esposito, E.A.d.R. Duek, and R. Caram, Effects of alloying elements on the cytotoxic response of titanium alloys. Materials Science and Engineering: C, 2011: p. 833-839.
    24. Loo, D. and J. Rillema, Chapter 14 measurement of cell death. 1998: p. 251-264.
    25. Hwang, S., Chitinous materials inhibit nitric oxide production by activated RAW 264.7 macrophages. Biochemical and Biophysical Research Communications, 2000: p. 229-233.
    26. Lyle, D.B., J.C. Shallcross, C.N. Durfor, V.M. Hitchins, J.C. Breger, and J.J. Langone, Screening biomaterials for stimulation of nitric oxide-mediated inflammation. Journal of Biomedical Materials Research Part A, 2009: p. 82-93.
    27. Yoon, H., M. Moon, H. Park, S. Im, and Y. Kim, Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells. Biochemical and Biophysical Research Communications, 2007: p. 954-959.
    28. van de Loosdrecht, A.A., R.H. Beelen, G.J. Ossenkoppele, M.G. Broekhoven, and M.M. Langenhuijsen, A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. Journal of Immunological Methods, 1994. 174: p. 311-20.
    29. Mtt proliferation assay protocol.
    30. Passage Procedure for RAW 264.7 Cells.
    31. Gonzalez-Scarano, F. and G. Baltuch, Microglia as mediators of inflammatory and degenerative diseases. Annual Review Neuroscience, 1999: p. 219-40.
    32. Per-Erik Jansson, A.A.L., Bengt LINDBERG, and Ralfh WOLLIN, Structural studies on the hexose region of the core in lipopolysaccharides from enterobacteriaceae. Eur. J. Biochem., 1981: p. 571 -577.
    33. Yoon, H.J., M.E. Moon, H.S. Park, S.Y. Im, and Y.H. Kim, Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells. Biochemical and Biophysical Research Communications, 2007. 358(3): p. 954-959.
    34. Hwang, S.M., C.Y. Chen, S.S. Chen, and J.C. Chen, Chitinous materials inhibit nitric oxide production by activated RAW 264.7 macrophages. Biochemical and Biophysical Research Communications, 2000. 271(1): p. 229-33.
    35. Jie Sun, X.Z., Mark Broderick and Harry Fein, Measurement of nitric oxide production in biological systems by using griess reaction assay. Sensors, 2003: p. 276-284.
    36. David Jourd’heuil, D.K.a.M.B.G., Interactions between superoxide and nitric oxide: implications in DNA damage and mutagenesis. Frontiers in Bioscience May 1, 1997: p. 189-196,.
    37. 生技/醫藥速報半月刊 第 119 期
    38. Kiernan, J.A., Formaldehyde, formalin, paraformaldehyde and glutaraldehyde:What they are and what they do. Article published in Microscopy Today, 2000: p. 8-12.

    無法下載圖示 全文公開日期 2016/07/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE