簡易檢索 / 詳目顯示

研究生: 古家豪
Chia-hao Ku
論文名稱: 電力線電磁相容及高頻應用之研究
A Study on EMC and High-Frequency Applications for Power Lines
指導教授: 楊成發
Chang-Fa Yang
口試委員: 吳啟瑞
Chi-Jui Wu
辜志承
Jyh-Cherng Gu
楊金石
none
陳南鳴
Nan-Ming Chen
劉志文
Chih-Wen Liu
陳士麟
Shi-Lin Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 128
中文關鍵詞: 電力線通訊故障點電磁相容電力線
外文關鍵詞: Power Line, PLC, Fault Location, EMC
相關次數: 點閱:205下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在探討建構於電力線高頻及電磁相容之應用,主要分成三部分:電力線載波寬頻通訊傳輸特性之測量、電力線受輻射天線干擾之電磁相容研究及脈衝電流反射定位法於電力電纜故障點偵測。
    首先,針對現有之電力線系統進行載波頻段傳輸特性之測量,同時建立電力線之高頻傳輸模型,來作為訊號傳遞分析之依據,並探討配電系統對訊號衰減、阻抗匹配及電磁干擾(EMI)等問題,以提供規劃及建構電力線寬頻通訊的參考。
    其次,本文研究歸航台天線所發射之525 kHz導引訊號對鄰近架空電力線及通信線所引起的電磁干擾問題,其中架空線電力上的感應電壓會導致歸航台內的電氣裝置故障,為了深入瞭解電磁干擾的影響,乃應用時域有限差分法軟體(XFDTD)來評估架空線上的感應電壓。研究中發現造成干擾的主要原因分別為來自歸航台天線輻射至架空線所耦合的縱向感應電壓及天線本身的自感應電流流經接地電極而導致的地電位湧升所引起。另外,為了抑制上述EMI 所引起的相關問題乃採用個別接地系統、屏蔽電話以及鄰近歸航台之架空線改用地下電纜線等措施來進行改善。目前,歸航台內的整個系統包括電力、導航及電話等皆可正常操作。
    另外,探討脈衝電流反射定位法應用於XLPE電力電纜故障點偵測,文中乃發展改善脈衝電流反射定位法的技術以消除多重反射的影響,而該技術能快速、方便且準確地來偵測地下電力電纜故障位置,以縮短復電時程,提昇供電品質;其中,應用電磁暫態程式(EMTP)來模擬該電力電纜架構的金屬遮蔽層感應電壓及電流,並通過花蓮現場全長9.1km輸電級69kV XLPE地下電纜的故障點偵測證實其適用性。
    本文各章之結果在考慮實際環境的複雜度,所得模擬與量測結果都相當吻合,同時更經歷實際的驗證其功效,未來在相關應用及研究領域皆具有十分重要的參考價值。


    The thesis explores applications of high frequency and electromagnetic compatibility (EMC) based on electric power lines, and it is mainly divided into three parts: 1) measurement of propagation characteristics in wide-band communication of power lines, 2) the study of the EMC between overhead power lines and radiation antennas and 3) improvement of impulse current methods applied in locating fault points.
    First of all, measurement of the carrier-wave signal transmission characteristics is carried out for the existing electric power line system and high-frequency transmission model is build that acts as a basis of signal analysis. Also, the questions of signal decay, impedance-matching, and EMI in the power distribution system are explored. Those results can offer reference, which can be used for constructing a broadband system of communication over power lines in the future.
    Second, electromagnetic interference (EMI) occurring in electric power and telephone lines due to radiation at a frequency of 525 kHz from an aeronautical radio navigation station are studied, to determine the parts of the electrical equipment that were affected resulting in damage or malfunction. The induced voltages measured on those lines caused malfunction or even damage to some electrical devices inside the station. To understand these EMI effects further, an FDTD (finite-difference time-domain) software package, XFDTD, was applied to evaluate the induced voltages. It was found that the major reasons resulting in interference were due to longitudinally induced voltages and ground potential rises. They were caused by the radiation from the antenna of the station and current flowing through the ground grids, respectively. In addition, mitigation of EMI was performed to correct these problems by applying separate grounding systems, shielding the telephone, and using underground cables instead of overhead lines near the station. Currently, the whole system inside the station, including electric power, navigation, and telephone, operates normally.
    In addition, the fault-location in XLPE (cross-linked polyethylene) cables applying an impulse current method (ICE) is explored, and a technique has been developed to improve the multi-reflections in ICE. The technique can quickly, conveniently, and accurately detect the fault locations in underground electric power cables. Also, it can shorten the recovery time of electric power delivery. Its suitability has been verified through simulations in EMTP (Electromagnetic Transients Program) and field-testing in a 9.1 km-length, 69kV transmission level XLPE underground power cable.
    Taking the complexity of the actual environment into account, the results of both the simulation and measurements in every part of the present study achieved satisfactory agreement. Also, they have been experimented in field tests to verify their effectiveness, presenting an important reference value in relevant applications for the future.

    第一章 緒 論 1 1.1 前言 1 1.2 本論文之貢獻 1 1.3 本論文概論 2 第二章 電力線載波寬頻通訊 4 2.1 本章摘要 4 2.2 前言 4 2.3 最後一哩連接 5 2.3.1光纖通訊 6 2.3.2無線通訊 7 2.3.3衛星通訊 8 2.3.4電力線通訊 10 2.4.1台灣電力線載波通訊之應用及發展 12 2.4.2電力線通訊發展現況與遠景 16 2.5 寬頻通訊技術簡介 17 2.5.1寬頻通訊系統 17 2.5.2 OFDM應用於PLC的優勢 19 2.6 台電公司電力設備高頻特性分析 22 2.6.1 高頻傳輸模式 24 2.6.2 集總式元件所造成的影響 26 2.6.3 電力設備高頻特性實測 28 2.7 電力線載波之電磁干擾 40 2.8 PLC相關規範與探討 46 2.8.1 電磁輻射相關規範 46 2.8.2 頻譜管制 48 2.9 本章結論 50 第三章 輻射天線與鄰近架空線之電磁相容 51 3.1 本章摘要 51 3.2 前言 51 3.3 問題描述 52 3.4 現場實測 56 3.5 數值模擬 63 3.5.1 馬克斯威爾方程式與有限時域差分法 64 3.5.2 XFDTD模擬結果 67 3.6 電磁相容改善對策與措施 71 3.6.1 建議改善對策 71 3.6.2 實際改善措失 72 3.7 結果與討論 74 第四章 電力電纜故障偵測 76 4.1 本章摘要 76 4.2 前言 76 4.3 電力電纜故障點偵測 77 4.3.1 故障類型 77 4.3.2 故障點找尋步驟 78 4.3.3 故障點找尋方法 80 4.4 脈衝電流反射定位法 83 4.4.1 等效電路 85 4.4.2 修正之等效電路 86 4.4.3 電容值與反射係數之對應關係 89 4.4.4 電容值與電容端壓之關係 90 4.5 EMTP模擬 91 4.5.1 EMTP輸入檔基本架構[93] 91 4.5.2 EMTP之輸入流程 93 4.5.3 地下電纜之EMTP模型 94 4.5.4 遮蔽層共構區段三區間的換位方式 95 4.5.5 共構區段三區間換位之EMTP模擬結果 97 4.6 花蓮現場電纜距離校正實驗 106 4.7 故障偵測實例 107 4.8 本章結論 111 第五章 結論與未來研究方向 113 5.1 總結 113 5.2 未來研究方向 114 參考文獻 116 附錄A 123 附錄B 124 作者簡介 125

    [1] L. Lampe, R. Schober, S. Yiu,” Distributed Space–Time Coding for Multihop Transmission in Power Line Communication Networks,” IEEE Journal on Selected Areas in Communications, vol. 24, Issue 7, pp.1389-1400, July 2006.
    [2] D. Sabolic, A. Bazant, R. Malaric, “Signal Popagation Mdeling in Pwer-line Cmmunication Neworks, IEEE Transactions on Power Delivery, vol. 20, Issue 4, pp. 2429–2436, Oct. 2005.
    [3] R. Cosse, J. R. Bowen, J. E. Combs, H. T. Dunn, D. G. Hildreth, M. A. Pilcher, “Smart Idustrial Sbstations,” IEEE Industry Applications Magazine, vol. 11, Issue 2, pp.12–20, Mar-Apr. 2005.
    [4] I. Bell, “The Future of Control Programmable Automation Controllers,” Manufacturing Engineer, vol. 84, Issue 4, pp. 36–39, Aug.-Sept. 2005.
    [5] F. Goodman et al., “Technical and system requirements for advanced distribution automation,” Electric Power Research Institute Technical Report 1010915, June 2004.
    [6] A. L. Garcia, I. Widjaja, “Communication Networks: Fundamental Concepts and Key architectures,” McGraw-Hill Inc, 2004.
    [7] T. Tommila, O. Venta, K. Koskinen, “Next generation industrial automation-needs and opportunities. Automation Technology Review,” 2001.
    [8] I. F. Akyildiz, M. C. Vuran, O. B. Akan, W. Su, “Wireless sensor networks: a survey revisited,” Computer Networks Journal, in press.
    [9] A. Minosi et al., “Intelligent, Low-power and low-cost measurement system for energy consumption,” Proceeding of IEEE Vechicle, pp. 125-130, July 2003.
    [10] J. Jun, P. Peddabachagari, M. Sichitiu, “Theoretical maximum throughput of IEEE 802.11 and its applications,” IEEE International Symposium on Network Computing and Applications, pp. 249-256, April 2003.
    [11] A. Tisot, Rio Grande, “electric monitors remote energy assets via satellite,” Utility Automation & Engineering T&D Magzine, July 2004.
    [12] G.. E. Ziegler, “Protection and substation automation,” Electrial, vol. 206, pp. 14-23, Feb. 2003.
    [13] E. Ekici, I. F. Akyildiz, M. D. Bender, “A multicast routing algorithm for LEO satellite IP networks,” IEEE Transactions on Networking, vol. 10, No. 2, pp. 183-192, 2002.
    [14] A. Jamalipour et al., “Guest editorial broadband IP networks via satellites Part 1,” IEEE Journal on Selected Areas in Communications, vol. 22, No. 2, pp 213-217, 2004.
    [15] Y. Hu, V. O. Li, “Satellite-based Internet: a tutorial”, IEEE Communications Magazine, vol. 39, pp. 154-162, March 2001.
    [16] I. H. Cavdar, “A solution to remote detection of illegal electricity usage via power line communications,” IEEE Transactions on Power Delivery, vol. 19, pp. 1663-1667, Oct, 2004.
    [17] N. Pavlidou, A. J. H. Vinck, J. Yazdani, B. Honary, “Power line communications: state of the art and future trends,” IEEE Communications Magazine, vol. 41, pp. 34-40, April 2003.
    [18] Y. Abe et al., “Development of high-speed power line communication modem,” SEI Technical Review, vol. 58, pp. 28-33, June 2004.
    [19] S. Galli, A. Scaglione, K. Dosteri, “Broadband is power: Internet access through the power line network,” IEEE Communications Magazine, vol. 41, pp. 82-83, May 2003.
    [20] W. Lili. H. Widmer, P. Raffin, “Broadband PLC access systems and field deployment in European power line networks,” IEEE Communications Magazine, vol. 41, pp. 114-118, May 2003.
    [21] ANSI/IEEE Std P1675: IEEE Standard for Broadband over Power Line Hardware. Available from: <http://grouper.ieee.org/groups/ bop/>.
    [22] 吳啟瑞,黃佳文,宋平生,顏榮良,張宏展,雙向通訊控制示範系統測試研究,台灣電力公司研究報告,民國八十年四月。
    [23] 吳啟瑞,黃佳文,張宏展,顏榮良,雙向通訊控制實際應用於台電配電饋線之研究,台灣電力公司研究報告,民國八十二年十月。
    [24] 張朝陽,吳啟瑞,王俊傑,黃佳文,顏榮良,「直接負載控制之設計與應用」,第十五屆電力工程研討會,第576~582頁,民國八十三年十二月。
    [25] 吳啟瑞,顏榮良,李親民,臥龍變電所直接控制尖峰負載之研究,台灣電力公司研究報告,民國八十六年六月。
    [26] 吳啟瑞,宋平生,顏榮良等,漣波載直接控制示範計畫完成報告,台灣電力公司研究報告,民國八十九年十月。
    [27] DS2 (http://www.ds2.es)
    [28] Ambient Corporation (http://www.ambientcorp.com)
    [29] Xline (http://www.xline.com)
    [30] Ascom(http://www.ascom.com)
    [31] Komumunikations-Elektronik GmbH (http://www.onlinekosten.de)
    [32] Adaptive Networks (http://www.adaptivenetworks.com)
    [33] Ilevo AB (http://www.ilevo.com)
    [34] Enikia (http://www.enikia.com)
    [35] Alcatel Kommunikations (http://www.alcatel-ke.de)
    [36] Powerline Technologies, Inc. (http://www.powerline.com)
    [37] PowerComm Systems, Inc. (http://www.powercommsystems.com)
    [38] Fibrlink Networks (http://www.fibrlink.com)
    [39] Inovatech(http://www.inovatech-inc.com)
    [40] http://marketing.chinatimes.com/ItemDetailPage/MainContent/05MediaContent.asp?MMContentNoID=14503&MMMediaType=hot_news
    [41] C. Drewes, W. Aicher, J. Hausner, ”The wireless art and the wired force of subscriber access,” IEEE Communications Magazine, vol.39, pp.118-124, May 2001.
    [42] D. Hansen, “Review of EMC aspects in recent European PLC development,” IEEE Power Engineering Society Summer Meeting, vol.3, 2002.
    [43] 交通部電信總局(http://www.dgt.gov.tw/)
    [44] Richard van Nee, Ramjee Prasad, “OFDM Wireless Multimedia Communication,” Artech House Publishers.
    [45] Matthew S. Gast, “802.11 Wireless networks The Definitive Guide”, O'reilly 2002.
    [46] M. Gotz, M. Rapp, K. Dostert, “Power line channel characteristics and their effect on communication system design,” IEEE Communications Magazine, vol.42, pp.78-86, April 2004.
    [47] 吳宜欣,『電力線通訊之傳輸特性研究』,台灣科技大學碩士論文,民國九十三年七月。
    [48] Inovatech (http://www.inovatech-inc.com)
    [49] ETSI (http://www.etsi.org)
    [50] Federal Communications Commission (http://www.fcc.gov)
    [51] European Committee for Electrotechnical Standardization (http://www.cenelec.org)
    [52] Regulating administration for telecommunications and post (http://www.regtp.de)
    [53] Radiocommunications Agency (http://www.radio.gov.uk)
    [54] International Electrotechnical Commission (http://www.iec.ch)
    [55] D. Taylor, R. S. Satterwhite, and C.W. Harrison, “The response of a terminated two-wire transmission line excited by a nonuniform electromagnetic field,” IEEE Transactions on Antenna Propagation, vol. 13, no. 6, pp. 987-989, Nov. 1987.
    [56] A. K. Agrawal, et al., “Transient response of multiconductor field,” IEEE Transactions on Electromagnetic Compatability, vol. 22, no. 2, May. 1980.
    [57] F. Rashidi, “Formulation of field-to-transmission line coupling equations in terms of magnetic excitation field,” IEEE Transactions on Electromagnetic Compatability, vol. 35, no. 3, pp. 404-407, Aug. 1993.
    [58] C. A. Nucci, F. R. Rachidi, M. Ianoz, and C. Mazzetti, “Comparison of two coupling models for lightning-induced overvoltage calculations,” IEEE Transactions on Power Delivery, vol. 10, no. 1, pp. 330-336, Jan. 1995.
    [59] M. Rubinstein, A. Y. Tzeng, M. A. Uman, P. J. Medelius, and E. W. Thomson, “An experimental test of a theory of lightning-induced voltages on an overhead wire,” IEEE Transactions on Electromagnetic Compatability, vol. 31, no. 4, pp. 376-383, Nov. 1989.
    [60] C. A. Nucci and F. Rachidi, “On the contribution of the electriomagnetic field components in field-to-transmission line interaction,” IEEE Transactions on Electromagnetic Compatability, vol. 37, pp. 505-508, Nov. 1995.
    [61] P. Harms, R. Mittra, and J. Naolny, “Simulating measurements for a cable radiation study,” IEEE Transactions on Electromagnetic Compatability, vol. 38, no. 1, pp. 25-30, Feb.1996.
    [62] J. C. Ju, H. Y. Lee, D. C. Park, and N. S. Chung, “A simple model for a bundle of twisted-pair wires,” IEEE Electromagnetic Compatibility, 2001. EMC. 2001 International Symposium, vol. 1, pp. 649-652, 2001.
    [63] J. C. Ju, H. Y. Lee, G. J. Lim, and D. C. Park, “FDTD analysis on a telecommunication cable immersed in lightning EM fields,” IEEE Electromagnetic Compatibility, EMC. 2000 International Symposium, vol. 2, pp. 795-799, 2000.
    [64] J. G. Maloney, K. L. Shlager and G. S. Smith, “A Simple FDTD model for transient excitation of antenna by transmission lines propagation,” IEEE Transactions on Antenna Propagation, vol. 42, pp. 289-292, Feb. 1994.
    [65] S. Tkatchenko, F. Rachidi and M. Ianoz, “High-frequency electromagnetic field coupling to long terminated lines,” IEEE Transactions on Electromagnetic Compatability, vol. 43, pp. 117-128, 2001.
    [66] XFDTD, User’s manual, REMCOM Corp., USA.
    [67] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on Electromagnetic Compatability, vol. 14, pp. 302-307, May 1966.
    [68] Matthew N. O. Sadiku, Numerical Techniques in Electromagnetics, CRC Press, 1992. Xfdtd.
    [69] Takagi, Y. Yamakoshi, M. Yamaura, R. Kondow, and T. Matsushima, “Development of a new type fault locator using the one-terminal voltage and current data,” IEEE Transactions on Power Apparatus and Systems, vol. 101, no. 8, pp. 2892-2898, Aug. 1982.
    [70] A.Wiszniewski, “Accurate fault impedance locating algorithm,” IEE Proceeding C, vol. 130, no. 6, pp. 311-315, 1983.
    [71] L. Eriksson, M. M. Sahaz, and G. D. Rockkefeler, “An accurate fault locator with compensation for apparent reactance in the fault resistance resulting from remote-end infeed,” IEEE Transaction PAS-104, no. 2, pp. 424-436, 1985.
    [72] El Sayed Tag, El Din, Mohamed Mamdouh Abdel Aziz, Doaa khalil Ibrahim and Mahmoud Gilany, “Fault location scheme for combined overhead line with underground power cable,” Electric Power Systems Research, vol. 76, Issue 11, pp. 928-935, July 2006.
    [73] V. Cook, “Fundamental aspects of fault location used in distance protection,” IEE Proceeding C, vol. 133, no. 6, pp. 359-368, 1986.
    [74] A. T. Johns, P. J. Moore, and R. Whittard, “New technique for the accurate location of earth faults on transmission systems,” IEE Proceding Generation Transmission Distribution, vol. 142, no. 2, pp.119-127, Mar. 1995.
    [75] B. M. Aucoin and B. D. Russel, “Distribution high impedance fault detection utilizing high frequency current components,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-101, no. 6, pp. 1596-1606, June 1982.
    [76] G. B. Ancell and N. C. Pahalawaththa, “Effects of frequency dependence and line parameters on single ended traveling wave based fault location schemes,” IEE Proceeding C, vol. 139, no. 4, pp. 332-342, Feb. 1992.
    [77] G. B. Ancell and N. C. Pahalawaththa, “Maximum likelihood estimation of fault location on transmission lines using traveling waves,” IEEE Transactions on Power Delivery, vol. 9, no. 2, pp. 680-688, Apr. 1994.
    [78] Z. Q. Bo, G. Weller, and M. A. Redfern, “Accurate fault location technique for distribution system using fault-generated high-frequency transient voltage signals”, IEE Proceding Generation Transmission Distribution, vol 146, no. 1, pp. 73-79, Jan. 1999.
    [79] T. Kawai, N. Takinami, and T. Chino etc, “A new approach to cable fault location using fiber technology (Part 1),” IEEE Transactions on Power Delivery, vol. 10, no. 1, Jan. 1995.
    [80] H. H. Wang and W. L. Keerthipala, “Fuzzy-neuro approach to fault classification for transmission line protection,” IEEE Transactions on on Power Delivery, vol. 13, no. 4, Oct. 1998.
    [81] F. H. Magnago and A. Abur, “Fault location using wavelets,” IEEE Transactions on Power Delivery, vol. 13, no. 4, pp. 1475-1480, Oct. 1998.
    [82] S. J. Huang and C. T. Hsieh, “High-impedance fault detection utilizing a Marlet wavelet transform approach,” IEEE Transactions on Power Delivery, vol. 14, no 4, pp. 1401-1407, Oct. 1999.
    [83] O. Chaari, P. Bastard, and M. Meunier, “Prony’s method: An efficient tool for the analysis of earth fault currents in Petersen-coil-protected networks,” IEEE Transactions on Power Systems, vol. 14, no. 1, pp. 226-231, Feb. 1999.
    [84] D. J. Trudnowski, J. M. Johnson, and J. F. Hauer, “Making Prony analysis more accurate using multiple signals,” IEEE Transaction on Power Delivery, vol. 10, no. 3, pp. 1234-1241, July. 1995.
    [85] M. M. Tawfik, and M. M. Morcos, “ANN-based techniques for estimating fault location on transmission lines using Prony method,” IEEE Transactions on Power Delivery, vol. 16, no. 2, pp. 219-224, Apr. 2001.
    [86] IEEE Guide for the application sheath-bonding methods for single conductor cables and calculation of induced voltages and currents in cable sheaths, IEEE Std. 575-1988, Nov. 1987.
    [87] E. C. Bascom, D. W. Von Dollen, and H. W. Ng, “Computerized underground cable fault location expertise,” IEEE Power Engineering Society, pp.376-382, 1994.
    [88] G. Katsuta, K. Muraoka, N. Inoue, S. Sakai, T. Tsunekage, and K. Ando, “Fault section detection system for 66-kV underground branch transmission lines using optical magnetic field sensors,” IEEE Transactions on Power Delivery, vol. 7, No.1, Jan. 1992.
    [89] Y. Nakamura, T. Kuroshima, M. Takeuchi, T. Sanpei, S. Suzuki, and S. Ishikura, “Installation of 66kV XLPE power-optical fiber composite submarine cable and water pipe for the Trans-Tokyo bay highway,” IEEE Transactions on Power Delivery, vol. 10, No. 3, July 1995.
    [90] B. Clegg, Underground Cable Fault Location. London, UK, McGraw Hill Inc., 1993.
    [91] D. K. Cheng, Fundamentals of Engineering Electromagnetics. California: USA, Addison Wesley, pp. 347–350, 1993.
    [92] http:// www.radiodetection.ca/docs/imsa2001.pdf
    [93] K. U. Leuven EMTP Center, Alternative Transients Program-Rule Book, Leuven EMTP Center, Belgium, 1987.
    [94] CCITT, ISBN 92-61-04031-4“Calculating induced voltages and currents in practical cases,” Geneva 1989.

    無法下載圖示 全文公開日期 2011/07/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE