簡易檢索 / 詳目顯示

研究生: 蔡欣蓓
Hsin-Pei Tsai
論文名稱: 以開環歧化聚合法合成含有對苯乙烯和咔唑乙烯的嵌段及無規共聚物之性質與鑑定
Synthesis of Block and Random Copolymers Containing Phenylenevinylenes and Carbazolevinylenes via Ring-Opening Metathesis Polymerization and Their Properties and Characterization
指導教授: 游進陽
Chin-Yang Yu
口試委員: 游進陽
Chin-Yang Yu
羅承慈
Chen-Tsyr Lo
堀江正樹
Masaki Horie
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 109
中文關鍵詞: 咔唑乙烯對苯乙烯開環歧化聚合崁段共聚物無規共聚物形態學自組裝性質
外文關鍵詞: carbazolevinylenes, phenylenevinylenes, ring-opening metathesis polymerization, block copolymers, random copolymers, morphology, self-assembly behaviours
相關次數: 點閱:231下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究為探討含有咔唑乙烯及對苯乙烯重複單元之崁段共聚物及無規共聚物的合成與性質鑑定。實驗設計為聚合相同的咔唑乙烯重複單元之莫爾數比和不同的對苯乙烯重複單元之莫爾數比,莫爾體積比個別為6.7:1、3.4:1及2.2:1等三種比例之崁段共聚物及無規共聚物,並比較同元聚合物、崁段共聚物及無規共聚物之間得性質差異。首先,利用麥克默里反應合成咔唑乙烯及對苯乙烯的單體,再利用開環聚合反應來進行聚合,催化劑則是採用第三代格拉布催化劑作為聚合反應之起始劑,藉此可有效精準地控制聚合物之重複單元數和分子量,並且可降低聚合物之多分散性。
初步先透過核磁共振光譜來鑑定聚合物含有咔唑乙烯及對苯乙烯之重複單元,並且利用凝膠滲透層析法測定聚合物之分子量及其多分散性,再依據紫外–可見光吸收光譜、光致發光光譜、熱重分析、差式掃描熱分析儀以及循環伏安法探討聚合物之光學、熱性質與電化學性質,最後利用原子力顯微鏡來探討高分子的形態學,並探討聚合物之聚集行為及其自組裝性質。


This thesis is to explore the synthesis and characterization of the block copolymers and random copolymers via ring-opening metathesis polymerization of cyclic monomers such as carbazolevinylenes and phenylenevinylenes using the third-generation Grubbs’ initiator. The block copolymers and random copolymers of the different molar ratios of carbazolevinylene and phenylvinylene which is corresponding to the volume ratio of carbazolevinylenes to phenylvinylene of 6.7:1, 3.4:1 and 2.2:1 have been prepared, respectively. The ring-strained, cyclic monomers have been synthesized via McMurry reaction. Block copolymers and random copolymers via ring-opening metathesis polymerization with third-generation Grubbs’ initiator can precisely control the molecular weight and the molecular weight distribution.
The structures of monomers and polymers can be determined by 1H nuclear magnetic resonance spectroscopy. The optical properties of polymers can be investigated by UV-vis absorption spectroscopy and photoluminescence. The thermal properties of the polymers have been estimated by thermogravimetric analysis and differential scanning calorimeter. The electrochemical properties of the polymers have been investigated by cyclic voltammetry. The morphologies of polymers have been determined by atomic force microscopy and further explored the aggregation and self-assembly behaviours.

Abstract I 中文摘要 II Acknowledgement III Table of Content V Chapter 1. Introduction and Aims 1 1.1 Conjugated polymers 1 1.2 The origins of poly-(p-phenylenevinylene) 4 1.2.1 Synthesis routes of PPV 6 1.2.2 Precursor routes to PPV 7 1.3 Ring-opening metathesis polymerization (ROMP) 9 1.3.1 Catalyst for ROMP 9 1.3.2 Mechanism of ring-opening metathesis polymerization 13 1.4 Copolymers 14 1.4.1 Block copolymer 15 1.4.2 Random copolymer 16 1.5 Self-assembly of polymers 17 1.5.1 Polymerization-induced self-assembly (PISA) 18 1.6 Aim of the project 21 Chapter 2. Result and Discussion 23 2.1 Synthesis and characterization of monomers 23 2.1.1 Synthesis and characterization of carbazolephanediene 23 2.1.2 Synthesis and characterization of dimethoxy-1,4(1,4)-dibenzenacyclohexaphane-2,5-diene 28 2.2 Synthesis and characterization of polymers 34 2.2.1 Synthesis of homopolymers 34 2.2.2 Synthesis of copolymers 35 2.2.3 Molecular weight and structure characterization of polymers 37 2.3 Properties of Polymers 44 2.3.1 Optical properties 44 2.3.2 Solvatochromic effect of the polymers 49 2.3.3 Thermal properties 58 2.3.4 Electrochemical properties 61 2.3.5 Morphology of the polymer films 64 Chapter 3. Conclusion 70 Chapter 4. Experimental Section 72 4.1 General procedures 72 4.2 Synthesis of precursors and monomers 73 4.2.1 Synthesis of 3,6-dibromo-9H-carbazole (1) 73 4.2.2 Synthesis of 3,6-dibromo-9-(2-ethylhexyl)-9H-carbazole (2) 74 4.2.3 Synthesis of 9-(2-ethylhexyl)-9H-carbazole-3,6-dicarbaldehyde (3) 75 4.2.4 Synthesis of Carbazolephanediene (M1) 76 4.2.5 Synthesis of 1,4-bis(bromomethyl)-2,5-dimethoxybenzene (4) 77 4.2.6 Synthesis of 1,4-bis(bromomethyl)benzene (5) 77 4.2.7 Synthesis of 1,4-phenylenedimethanethiol (6) 78 4.2.8 Synthesis of dimethoxy-3,7-dithia-1,5(1,4)-dibenzenacyclooctaphane (7) 79 4.2.9 Synthesis of dimethoxy-1,4(1,4)-dibenzenacyclohexaphane compound with methyl(phenyl)sulfane (1:2) (8) 79 4.2.10 Synthesis of (methylsulfinyl)benzene compound with 12,15-dimethoxy-1,4(1,4)-dibenzeneacyclohexaphane (2:1) (9) 80 4.2.11 Synthesis of dimethoxy-1,4(1,4)-dibenzenacyclohexaphane-2,5-diene (M2) 81 4.3 Synthesis of polymers 82 4.3.1 Synthesis of homopolymer P1 82 4.3.2 Synthesis of homopolymer P2 83 4.3.3 Synthesis of homopolymer P3 84 4.3.4 Synthesis homopolymer P4 85 4.3.5 Synthesis of block copolymer P5 85 4.3.6 Synthesis of block copolymer P6 86 4.3.7 Synthesis of block copolymer P7 87 4.3.8 Synthesis of random copolymer P8 88 4.3.9 Synthesis of random copolymer P9 89 4.3.10 Synthesis of random copolymer P10 90 Appendix 92 References 107

[1] S. Sundhar, A. Bernstorf, W. Goch, D. Linson, L. Huntsman, IEEE International Symposium on Electrical Insulation 1992, 222.
[2] A. Pron, P. Rannou, Prog. Polym. Sci. 2001, 27, 135.
[3] K. L. Goh, A. Goto, Y. Lu, ACS Omega 2022, 7, 29787.
[4] A. P. H. J. Schenning, E. W. Meijer, Encyclopedia of Materials: Science and Technology (Second Edition) 2001, 3400.
[5] A. Banerji, A.-K. Schönbein, L. Halbrügge, World J. Chem. Educ. 2018, 6, 54.
[6] M. Stephen, K. Genevičius, G. Juška, K. Arlauskas, R. C. Hiorns, Polym. Int. 2017, 66, 13.
[7] P. Deng, B. Wu, Y. Lei, H. Cao, B. S. Ong, Macromolecules 2016, 49, 2541.
[8] Y.-W. Su, S.-C. Lan, K.-H. Wei, Mater. Today 2012, 15, 554.
[9] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, Nature 1990, 347, 539.
[10] A. Siove, D. Ades, C. Chevrot, Makromol. Chem. 1988, 190, 1361.
[11] F. Menk, M. Mondeshki, D. Dudenko, S. Shin, D. Schollmeyer, O. Ceyhun, T.-L. Choi, R. Zentel, Macromolecules 2015, 48, 7435.
[12] C. A. Young, A. Hammack, H. J. Lee, H. Jia, T. Yu, M. D. Marquez, A. C. Jamison, B. E. Gnade, T. R. Lee, ACS Omega 2019, 4, 22332.
[13] R. Cernini, X-C.Li, G. W. C. Spencer, A. B. Holmes, S. C. Moratti, R.H.Friend, Synth. Met. 1997, 84, 359.
[14] T. Junkers, J. Vandenbergh, P. Adriaensens, L. Lutsen, D. Vanderzande, Polym. Chem. 2012, 3, 275.
[15] H. G. Gilch, W. L. Wheelright, J. Polym, Sci. Part A-1 1966, 4, 1337.
[16] H. Becker, H. Spreitzer, K. Ibrom, W. Kreuder, Macromolecules 1999, 32, 4925.
[17] T. Schwalm, J. Wiesecke, S. Immel, M. Rehahn, Macromolecules 2007, 40, 8842.
[18] R. W. LENZ, Chien-ChungHan, J. Stenger-Sith, F. E. Karasz, J. Polym. Sci. Part A Polym. Chem. 1988, 26, 3241.
[19] S.-C. Lo, A. K. Sheridan, I. D. W. Samuel, P. L. Burn, J.Master. Chem. 1999, 9, 2165.
[20] C. W. Bielawski, R. H. Grubbs, Prog. Polym. Sci. 2007, 32, 1.
[21] C.-J. Liu, C.-C. Wang, D.-L. Kuo, C.-Y. Yu, Polymer 2019, 181, 12170.
[22] I. Choinopoulos, Polymers (Basel) 2019, 11, 198.
[23] C. W. Bielawski, R. H. Grubbs, Angew. Chem. Int. Ed. 2000, 39, 2903.
[24] R. H. Grubbs, Angew. Chem. Int. Ed. Engl. 2006, 45, 3760.
[25] R. R. Schrock, Chimia 2015, 69, 388.
[26] R. R. Schrock, A. H. Hoveyda, Angew. Chem. Int. Ed. Engl. 2003, 42, 4592.
[27] Y. Schrodi, R. L. Pederson, Aldrichimica ACTA 2007, 40, 45.
[28] P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996, 118, 100.
[29] S. H. Hong, A. G. Wenzel, T. T. Salguero, M. W. Day, R. H. Grubbs, J. Am. Chem. Soc. 2007, 129, 7961.
[30] T. L. Choi, R. H. Grubbs, Angew. Chem. Int. Ed. Engl. 2003, 42, 1743.
[31] J. P. M. Jennifer A. Love Dr., Tina M. Trnka, R. H. Grubbs Prof., Angew. Chem. Int. Ed. 2002, 41, 4035.
[32] J. A. L. Melanie S. Sanford, and Robert H. Grubbs, Organomettalics 2001, 20, 5314.
[33] E. O. Fischer, A. Maasböl, Angew. Chem. 1964, 76, 645.
[34] S. Sutthasupa, M. Shiotsuki, F. Sanda, Polym. J. 2010, 42, 905.
[35] F. S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem. 1990, 41, 525.
[36] H. Feng, X. Lu, W. Wang, N. G. Kang, J. W. Mays, Polymers (Basel) 2017, 9, 494.
[37] K. Matyjaszewski, Control Radical Polymerization 1998, 685.
[38] N. Corrigan, K. Jung, G. Moad, C. J. Hawker, K. Matyjaszewski, C. Boyer, Prog. Polym. Sci. 2020, 111.
[39] K. Parkatzidis, H. S. Wang, N. P. Truong, A. Anastasaki, Chem 2020, 6, 1575.
[40] A. V. Ruzette, L. Leibler, Nat. Mater 2005, 4, 19.
[41] C. E. Soteros, S. G. Whittington, J. Phys. A. Math. Gen. 2004, 37, R279.
[42] Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969.
[43] J. M. G. Swann, P. D. Topham, Polymers 2010, 2, 454.
[44] K. Y. Yoon, S. Shin, Y. J. Kim, I. Kim, E. Lee, T. L. Choi, Macromol. Rapid Commun. 2015, 36, 1069.
[45] N. J. W. Penfold, J. Yeow, C. Boyer, S. P. Armes, ACS Macro Lett. 2019, 8, 1029.
[46] N. J. Warren, S. P. Armes, J. Am. Chem. Soc. 2014, 136, 10174.
[47] Y. Pei, A. B. Lowe, P. J. Roth, Macromol. Rapid Commun. 2017, 38.
[48] J. Rieger, F. Stoffelbach, C. Bui, D. Alaimo, C. Jérôme, B. Charleux, Macromolecules 2008, 41, 4065.
[49] J. Rieger, G. Osterwinter, C. Bui, F. Stoffelbach, B. Charleux, Macromolecules 2009, 42, 5518.
[50] S. J. Weishäupl, D. C. Mayer, E. Thyrhaug, J. Hauer, A. Pöthig, R. A. Fischer, Dyes Pigm. 2021, 186, 109012.
[51] C.-C. Wang, C.-Y. Yu, Polymer 2019, 166, 123.
[52] R. H. Mitchell, T. K. Vinod, G. J. Bodwell, G. W. Bushnell, J. Org. Chem. 1989, 54, 5871.
[53] C.-Y. Yu, M. Helliwell, J. Raftery, M. L. Turner, Chem. Eur. J. 2011, 17, 6991.
[54] C.-Y. Yu, M. Horie, A. M. Spring, K. Tremel, M. L. Turner, Macromolecules 2009, 43, 222.
[55] K. F. L. Horng-Long Cheng, Synth. Met. 2001, 122, 387.
[56] Z. Guo, D. Lee, R. D. Schaller, X. Zuo, B. Lee, T. Luo, H. Gao, L. Huang, J. Am. Chem. Soc. 2014, 136, 10024.
[57] R. Traiphol, N. Charoenthai, T. Srikhirin, T. Kerdcharoen, T. Osotchan, T. Maturos, Polymer 2007, 48, 813.
[58] S. H. Chen, Su, A.C., Han, S.R. et al., Macromolecules 2004.

無法下載圖示 全文公開日期 2024/09/26 (校內網路)
全文公開日期 2112/09/26 (校外網路)
全文公開日期 2112/09/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE