簡易檢索 / 詳目顯示

研究生: 陳重年
Chung-Nien Chen
論文名稱: 專家與生手的滯後序列行為空間模式分析:以數位五連方積木拼圖遊戲為例
The Analysis of Spatial Behavior Patterns between Experts and Novices with Lag Sequential Analysis in Digital Pentomino Game
指導教授: 鄭海蓮
Hi-Lian Jeng
口試委員: 鄭海蓮
Hi-Lian Jeng
黃國禎
Gwo-Jen Hwang
宋涵鈺
Han-Yu Sung
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 79
中文關鍵詞: 數位遊戲式學習滯後序列行為模式分析空間能力數位五連方積木拼圖遊戲專家與生手
外文關鍵詞: Digital Game-based Learning, Sequential Behavioral Pattern Analysis, Spatial Ability, Digital Pentomino Game, Experts and Novices
相關次數: 點閱:407下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以質化與量化資料兼備之混合設計,探討專家與生手在數位五連方積木拼圖遊戲的滯後序列行為空間模式,瞭解兩者的行為模式差異,以促進生手育成專家。研究對象為未曾參與過五連方積木空間能力相關活動的47位國小四、五年級學童,依其在遊戲關卡的解題情形區分為專家與生手兩組,以獨立樣本t檢定考驗兩組的空間能力測驗分數及各關卡的各解平均操作次數,確認專家與生手的分組有效性後,繼之以滯後序列分析兩組解題時的行為歷程。
    有效的分組結果顯示,專家組在空間能力測驗的表現都顯著地優於生手組,且在各關的各解平均操作次數皆少於生手組,唯僅在困難關卡之第四、六關有達組間顯著性差異。專家與生手的序列行為模式分析結果顯示,專家在操作上比起生手更具系統性,能得知生手無法意識到的解題線索,且會反覆對任務重新評估與確認,自我要求較高。
    綜合本研究的質化、量化資料顯示,專家與生手僅在困難任務中才有顯著差異,簡單任務則否。若要運用本研究結果促進生手育成專家,一方面需培養生手習得像專家一樣的系統性思維和自我效能,一方面要有設計良好的循序漸進教材,以掌握工作任務中的基本要素與內涵,增進反覆監控歷程與評估解決方案的能力。


    Integrating qualitative and quantitative data, the study explored and differentiated the spatial behavior patterns between experts and novices with lag sequential analysis in Digital Pentomino Game with the expectation to find ways to cultivate novices into experts. There were 47 participants of primary grades 4 and 5 who had never had experiences in similar games or activities of Pentomino. They were assigned into groups of experts and novices according to the number of solutions they came up with each game task. After the effectiveness of grouping was confirmed by statistical comparisons of their spatial test scores and the average number of operations in solving the game tasks, the lag sequential behavior patterns between experts and novices was followed.
    The statistical results show that the grouping was effective in distinguishing experts and novices in that experts’ spatial test scores were significantly higher than those of novices, and experts’ average numbers of operations were less than those of novices in all the game tasks; however, significant differences were found only in the fourth and sixth (difficult) tasks. The sequential behavior analyses show that, in contrast to novices, experts were more systematic in performance operations, they can find clues to solutions, and they are better at re-evaluating and confirming their procedural performances repeatedly.
    In conclusion of the major results, it is suggested that (1) novices are to improve systematic thinking and self-effectiveness to monitor procedural performances and evaluate solutions like the experts, and (2) instructional training materials should be well organized to help novices grasp important task elements and contents so that their ability of repeated monitor and evaluation can be enhanced.

    摘要 I Abstract III 致謝 V 表次 IX 圖次 XI 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 3 第三節 名詞解釋 4 第四節 研究範圍與限制 7 第貳章 文獻探討 9 第一節 數位遊戲式學習與學習分析 9 第二節 滯後序列分析在數位遊戲式學習上的應用 11 第三節 數位五連方積木在空間能力學習上的應用 12 第四節 數位遊戲式學習中專家與生手的問題解決差異 13 第參章 研究方法 15 第一節 研究工具 15 第二節 研究對象 22 第三節 研究流程 28 第四節 研究設計與假設 30 第五節 資料處理與分析 30 第肆章 研究結果與討論 35 第一節 專家與生手第一關的行為模式差異 35 第二節 專家與生手第二關的行為模式差異 38 第三節 專家與生手第三關的行為模式差異 40 第四節 專家與生手第四關的行為模式差異 42 第五節 專家與生手第五關的行為模式差異 44 第六節 專家與生手第六關的行為模式差異 46 第七節 綜合討論 48 第伍章 結論與建議 51 第一節 結論 51 第二節 建議 52 參考文獻 55 附錄一 單筆Statement的資料細節示意 61 附錄二 SDS檔的資料細節示意 63

    中文部分
    吳冠蓉(2020)。使用互動式電子書和手機遊戲的空間能力教育訓練結果之比較。未出版之碩士論文,國立臺灣科技大學數位學習與教育研究所,台北市。
    何榮桂、簡茂發、鄭海蓮、區雅倫、卓沛勳、蕭孟莛、陳世玉(2007)。空間性向測驗(二)(以空間關係和推理能力為主)結案報告(計畫編號:研-95-007)。台北市:大學入學考試中心。
    潘博揚、鄭海蓮(2018年10月)。數位五連方積木拼圖遊戲中專家與生手行為模式的差異。「第十三屆海峽兩岸心理與教育測驗學術研討會暨中國測驗學會年會」發表之論文,南投縣日月潭教師會館。

    英文部分
    Angeli, C., Howard, S. K., Ma, J., Yang, J., & Kirschner, P. A. (2017). Data mining in educational technology classroom research: Can it make a contribution? Computers & Education, 113, 226-242.
    Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis. New York, NY: Cambridge university press.
    Bakeman, R., & Quera, V. (1992). SDIS: A sequential data interchange standard. Behavior Research Methods, Instruments, & Computers, 24, 554–559.
    Bakeman, R., & Quera, V. (1995). Analyzing interaction: Sequential analysis with SDIS & GSEQ. Cambridge, UK: Cambridge University Press.
    Brand-Gruwel, S., Wopereis, I., & Vermetten, Y. (2005). Information problem solving by experts and novices: Analysis of a complex cognitive skill. Computers in Human Behavior, 21(3), 487-508.
    Chang, C. Y., Kao, C. H., Hwang, G. J., & Lin, F. H. (2019). From experiencing to critical thinking: a contextual game-based learning approach to improving nursing students’ performance in Electrocardiogram training. Educational Technology Research and Development, 68, 1225–1245.
    Chen, C. H. (2019). The impacts of peer competition-based science gameplay on conceptual knowledge, intrinsic motivation, and learning behavioral patterns. Educational Technology Research and Development, 67(1), 179-198.
    Cherney, I. D. (2008). Mom, let me play more computer games: They improve my mental rotation skills. Sex Roles, 59, 776-786.
    Cheung, O. S., Hayward, W. G., & Gauthier, I. (2009). Dissociating the effects of angular disparity and image similarity in mental rotation and object recognition. Cognition, 113(1), 128-133.
    Chiang, T. H. C. (2017). Analysis of learning behavior in a flipped programing classroom adopting problem-solving strategies. Interactive Learning Environments, 25(2), 189-202.
    Dreyfus, S. E. (2004). The Five-Stage Model of Adult Skill Acquisition. Bulletin of Science, Technology & Society, 24(3), 177-181.
    Gaoxia, Z., Wanli, X., & Vitaliy, P. (2019). Uncovering the sequential patterns in transformative and non-transformative discourse during collaborative inquiry learning. The Internet and Higher Education, 41, 51-61.
    Hao, K. C., & Lee, L. C. (2019). The development and evaluation of an educational game integrating augmented reality, ARCS model, and types of games for English experiment learning: An analysis of learning. Interactive Learning Environments. Advance online publication. doi: 10.1080/10494820.2019.1619590
    Hou, H. T. (2012). Exploring the behavioral patterns of learners in an educational massively multiple online role-playing game (MMORPG). Computers & Education, 58(4), 1225-1233.
    Hou, H. T. (2015). Integrating cluster and sequential analysis to explore learners’ flow and behavioral patterns in a simulation game with situated-learning context for science courses: A video-based process exploration. Computers in Human Behavior, 48, 424-435.
    Hsieh, Y. H., Lin, Y. C., & Hou, H. T. (2015). Exploring elementary-school students' engagement patterns in a game-based learning environment. Journal of Educational Technology & Society, 18(2), 336-348.
    Huang, T. C., Chen, M. Y., & Lin, C. Y. (2017). Exploring the behavioral patterns transformation of learners in different 3D modeling teaching strategies. Computers in Human Behavior, 92, 670-678.
    Hung, P. H., Hwang, G. J., Lee, Y. H., & Su, I. H. (2012). A cognitive component analysis approach for developing game-based spatial learning tools. Computers & Education, 59(2), 762-773.
    Hussein, M. H., Ow, S. H., Cheong, L. S., & Thong, M. K. (2019). A Digital Game-Based Learning Method to Improve Students’ Critical Thinking Skills in Elementary Science. IEEE Access, 7, 96309-96318.
    Hwang, G. J., & Chen, C. H. (2017). Influences of an inquiry‐based ubiquitous gaming design on students’ learning achievements, motivation, behavioral patterns, and tendency towards critical thinking and problem solving. British Journal of Educational Technology, 48(4), 950-971.
    Hwang, G. J., Chu, H. C., & Yin, C. J. (2017). Objectives, methodologies and research issues of learning analytics. Interactive Learning Environments, 25(2), 143-146.
    Hwang, G. J., Hsu, T. C., Lai, C. L., & Hsueh, C. J. (2017). Interaction of problem-based gaming and learning anxiety in language students' English listening performance and progressive behavioral patterns. Computers & Education, 106, 26-42.
    Hwang, G. J., Hung, C. M., & Chen, N. S. (2014). Improving learning achievements, motivations and problem-solving skills through a peer assessment-based game development approach. Educational Technology Research and Development, 62(2), 129-145.
    Jeng, H. L., & Chen, Y. F. (2013). Comparisons of latent factor region means of spatial ability based on measurement invariance. Learning and Individual Differences, 27, 16-25.
    Jeng, H. L., Lai, W. Y., & Chao, A. K. (2010, October). Modeling Spatial Geometric Reasoning. Paper presented at The 15th Conference on Attention and Perception, Intersecting Social and Cognitive Neurosciences, National Chung Cheng University, Taiwan.
    Jeng, H. L., & Li, J. C. (2014, July). Difference comparisons of the primary grade students in computerized mental rotation test. Paper presented at The 9th Conference of the International Test Commission, San Sebastián, Spain.
    Jeng, H. L., & Liu, G. F. (2016). Test interactivity is promising in promoting gender equity in females’ pursuit of STEM careers. Learning and Individual Differences, 49, 201-208.
    Jirout, J. J., & Newcombe, N. S. (2015). Building blocks for developing spatial skills: Evidence from a large, representative US sample. Psychological Science, 26(3), 302-310.
    Ke, F. (2019). Mathematical problem solving and learning in an architecture-themed epistemic game. Educational Technology Research and Development, 67(5), 1085-1104.
    Kline, R. B. (1998). Principles and Practice of Structural Equation Modeling. New York, NY: The Guilford Press.
    Krisztián, Á., Bernáth, L., Gombos, H., & Vereczkei, L. (2015). Developing numerical ability in children with mathematical difficulties using origami. Perceptual and Motor Skills, 121(1), 233-243.
    Kwon, K., Shin, S., Brush, T. A., Glazewski, K. D., Edelberg, T., Park, S. J., Khlaif, Z., Nadiruzzaman, H., & Alangari, H. (2018). Inquiry learning behaviors captured through screencasts in problem-based learning. Interactive Learning Environments, 26(6), 839-855.
    Lee, J. Y., Donkers, J., Jarodzka, H., & van Merriënboer, J. J. (2019). How prior knowledge affects problem-solving performance in a medical simulation game: Using game-logs and eye-tracking. Computers in Human Behavior, 99, 268-277.
    Lin, C. H., & Chen, C. M. (2016). Developing spatial visualization and mental rotation with a digital puzzle game at primary school level. Computers in Human Behavior, 57, 23-30.
    Lin, C. H., Chen, C. M., & Lou, Y. C. (2014). Developing Spatial Orientation and Spatial Memory with a Treasure Hunting Game. Journal of Educational Technology & Society, 17(3), 79-92.
    Lindstedt, J. K., & Gray, W. D. (2019). Distinguishing experts from novices by the mind’s hand and mind’s eye. Cognitive Psychology, 109, 1-25.
    Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479-1498.
    Liu, C. C., Cheng, Y. B., & Huang, C. W. (2011). The effect of simulation games on the learning of computational problem solving. Computers & Education, 57(3), 1907-1918.
    Loh, C. S., Li, I. H., & Sheng, Y. (2016). Comparison of similarity measures to differentiate players' actions and decision-making profiles in serious games analytics. Computers in Human Behavior, 64, 562-574.
    Loh, C. S., & Sheng, Y. (2015). Measuring the (dis-) similarity between expert and novice behaviors as serious games analytics. Education and Information Technologies, 20(1), 5-19.
    Loh, C.S., Sheng Y., Ifenthaler D. (2015). Serious Games Analytics: Theoretical Framework. In Loh C., Sheng Y., Ifenthaler D. (Eds.), Serious Games Analytics (pp. 3-29). New York, NY: Springer.
    Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Sternberg’s (Ed.), Advances in the Psychology of Human Intelligence, pp. 181-248. Hillsdale, NJ: Lawrence Erlbaum Associates.
    McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889.
    Nazareth, A., Herrera, A., & Pruden, S. M. (2013). Explaining sex differences in mental rotation: role of spatial activity experience. Cognitive Processing, 14(2), 201-204.
    Noroozi, O., Alikhani, I., Järvelä, S., Kirschner, P. A., Juuso, I., & Seppänen, T. (2019). Multimodal data to design visual learning analytics for understanding regulation of learning. Computers in Human Behavior, 100, 298-304.
    Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse mental rotations test-different versions and factors that affect performance. Brain and Cognition, 28(1), 39-58.
    Prensky, M. (2007). Digital Game-Based Learning. St. Paul, MN: Paragon House.
    Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2012). Spatial anxiety relates to spatial abilities as a function of working memory in children. The Quarterly Journal of Experimental Psychology, 65(3), 474-487.
    Rizvi, S., Rienties, B., & Khoja, S. A. (2019). The role of demographics in online learning; A decision tree based approach. Computers & Education, 137, 32-47.
    Sims, V. K., & Mayer, R. E. (2002). Domain specificity of spatial expertise: The case of video game players. Applied Cognitive Psychology, 16(1), 97-115.
    Srisawasdi, N., & Panjaburee, P. (2019). Implementation of game-transformed inquiry-based learning to promote the understanding of and motivation to learn chemistry. Journal of Science Education and Technology, 28(2), 152-164.
    Sun, J. C. Y., Kuo, C. Y., Hou, H. T., & Lin, Y. Y. (2017). Exploring learners’ sequential behavioral patterns, flow experience, and learning performance in an anti-phishing educational game. Journal of Educational Technology & Society, 20(1), 45-60.
    Sung, H. Y., & Hwang, G. J. (2013). A collaborative game-based learning approach to improving students' learning performance in science courses. Computers & Education, 63, 43-51.
    Sung, H. Y., & Hwang, G. J. (2018). Facilitating effective digital game-based learning behaviors and learning performances of students based on a collaborative knowledge construction strategy. Interactive Learning Environments, 26(1), 118-134.
    Sung, H. Y., Hwang, G. J., Wu, P. H., & Lin, D. Q. (2018). Facilitating deep-strategy behaviors and positive learning performances in science inquiry activities with a 3D experiential gaming approach. Interactive Learning Environments, 26(8), 1053-1073.
    Sung, H. Y., Hwang, G. J., & Yen, Y. F. (2015). Development of a contextual decision-making game for improving students' learning performance in a health education course. Computers & Education, 82, 179-190.
    Taylor, H. A., & Hutton, A. (2013). Think3d!: Training spatial thinking fundamental to STEM education. Cognition and Instruction, 31(4), 434-455.
    Tsai, M. J., Huang, L. J., Hou, H. T., Hsu, C. Y., & Chiou, G. L. (2016). Visual behavior, flow and achievement in game-based learning. Computers & Education, 98, 115-129.
    Tüzün, H., Yılmaz-Soylu, M., Karakuş, T., İnal, Y., & Kızılkaya, G. (2009). The effects of computer games on primary school students’ achievement and motivation in geography learning. Computers & Education, 52(1), 68-77.
    Uttal, D. H., Cohen, C. A. (2012). Spatial thinking and STEM education: When, why and how? In B. H. Ross (Ed.), The Psychology of Learning and Motivation (Vol. 57, pp. 147–181). San Diego, CA: Academic Press.
    Vander Heyden, K. M., Huizinga, M., & Jolles, J. (2017). Effects of a classroom intervention with spatial play materials on children’s object and viewer transformation abilities. Developmental Psychology, 53(2), 290-305.
    Yang, Y. T. C. (2015). Virtual CEOs: A blended approach to digital gaming for enhancing higher order thinking and academic achievement among vocational high school students. Computers & Education, 81, 281-295.
    Yang, J. C., & Chen, S. Y. (2010). Effects of gender differences and spatial abilities within a digital pentominoes game. Computers & Education, 55(3), 1220-1233.
    Zheng, J., Xing, W., Zhu, G., Chen, G., Zhao, H., & Xie, C. (2020). Profiling self-regulation behaviors in STEM learning of engineering design. Computers & Education, 143. doi: 10.1016/j.compedu.2019.103669

    無法下載圖示 全文公開日期 2025/08/06 (校內網路)
    全文公開日期 2030/08/06 (校外網路)
    全文公開日期 2030/08/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE