簡易檢索 / 詳目顯示

研究生: 馬世宇
Shih-Yu Ma
論文名稱: 設計環形頭部震動回饋用以減輕虛擬實境駕車體驗所產生之動暈症
Reducing Cybersickness in Virtual Reality Driving Experiences Using Head-Mounted Vibrational Feedback Device
指導教授: 余能豪
Neng-Hao Yu
口試委員: 陳彥仰
Mike Y. Chen
梁容輝
Rung-Huei Liang
學位類別: 碩士
Master
系所名稱: 設計學院 - 設計系
Department of Design
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 44
中文關鍵詞: 虛擬實境動暈症觸覺回饋駕駛體驗頭戴式裝置
外文關鍵詞: virtual reality, motion sickness, haptic feedback, driving experience, head-mounted device
相關次數: 點閱:320下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著虛擬實境(Virtual Reality, VR)技術蓬勃發展,越來越多內容創作者投入資源進行開發,進而帶來各種不同的遊玩體驗,然而在虛擬世界移動所產生的動暈症問題,是目前仍需要被克服的議題。
    目前已經有許多研究提出不同的減暈方式,已被證實搭配體感裝置的方式通常能有效降低暈眩,有些裝置甚至能夠提升遊玩體驗。本研究首先從過往文獻,整理現有減暈方式和設計,以及對於實驗有效性評估的方式。接著透過設計一套佩帶於頭部的環形震動觸覺裝置,模擬在駕駛體驗中所產生的慣性力回饋,如:加減速、轉向、路面顛簸等,從而減緩暈眩嚴重度。裝置設計完成後,共納入十二名受測者進行實驗,評估於被動和主動駕駛模式中,此系統對於降低暈眩之有效性,並與現有減暈方式進行比較。
    實驗結果顯示於被動模式中,受測者生理數值與沒有搭配減暈裝置之組別相比有顯著下降(p<.05),證實此系統能有效減少暈眩情形發生,後續也針對主觀評分與客觀量測數值差異進行分析,以及針對震動回饋對於遊戲體驗所產生之影響,及了解個體差異是否對於實驗結果產生影響,藉此提出未來設計改善方向。


    In recent years, with the flourishing development of virtual reality (VR) technology, more and more content creators have invested resources in development, bringing many different gaming experiences. However, cybersickness, a problem caused by movement in virtual worlds, is still an issue that needs to be overcome.
    There have been many studies proposing different ways to reduce cybersickness, and using devices that provide haptic feedback usually effectively reduces dizziness, and some devices even enhance the gaming experience. This study first reviews existing ways to reduce cybersickness and their effectiveness in experimental evaluations from past literature. Then, a head-mounted circular device is designed to simulate inertial force feedback (acceleration/deceleration and steering) experienced during driving. After design, a 12-person experiment is conducted to evaluate the effectiveness of the system in reducing dizziness in both passive and active driving modes, and to compare it with existing ways to reduce cybersickness.
    The experimental results show that the physiological values of the subjects in the passive mode significantly decreased (p <.05) compared to those without the cybersickness reduction device, confirming the effectiveness of this system in reducing motion sickness. In the discussion, we analyses conducting on the subjective ratings and objective measurement values differences, as well as the impact of vibration feedback on the experience and individual differences on the experiment to provide directions for design improvement.

    論文摘要 Abstract 誌謝 目錄 圖目錄 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與問題 2 1.2.1 研究目的 3 1.2.2 研究問題 3 第二章 文獻探討 4 2.1 針對移動場景設計之減暈研究 4 2.1.1 減少視覺刺激 4 2.1.2 外部刺激模擬前庭訊號 6 2.1.3 小結 8 2.2 評估暈眩程度和臨場感的方式 8 2.2.1 主觀問卷量測 8 2.2.2 客觀生理訊號量測 9 2.2.3 小結 10 第三章 研究方法 11 3.1 頭部震動回饋裝置 11 3.1.1 裝置設計 11 3.1.2 LRA 震動強度與反應時間 11 3.1.3 對照組回饋裝置 12 3.1.4 遊戲動態程式 12 3.1.5 LRA 震動強度校正 12 3.1.6 震動回饋設計 14 3.2 系統與裝置驗證 15 3.3 受試者體驗評估實驗 15 3.3.1 實驗設計 15 3.3.2 受試者與實驗流程 16 3.3.3 實驗裝置 18 3.3.4 GSR 資料前處理 19 第四章 實驗結果與分析 20 4.1 被動模式 20 4.1.1 被動模式 SSQ 數值分析 20 4.1.2 GSR 數值分析 20 4.1.3 PQ 數值分析 22 4.2 主動模式 22 4.2.1 Active SSQ 數值分析 22 4.2.2 GSR 數值分析 23 4.2.3 PQ 數值分析 24 4.3 受測者主觀排名 25 4.4 小結 25 第五章 討論 27 5.1 主觀與客觀數值對於暈眩程度呈現差異 27 5.2 不同震動回饋對於體驗的影響 28 5.2.1 震動模式的影響 28 5.2.2 震動聲的影響 28 5.3 個體差異對於實驗的影響 29 5.3.1 頭圍大小 29 5.3.2 實驗校正時的環境 29 第六章 結論 30 參考文獻 31 附錄一:SSQ 問卷 39 附錄二:PQ 問卷 41 附錄三:半結構訪談訪綱 42 附錄四:主觀排名問卷 43

    [1] Adhanom, I. B., Al-Zayer, M., Macneilage, P., and Folmer, E. Field-of-view restriction to reduce vr sickness does not impede spatial learning in women. ACM
    Transactions on Applied Perception 18, 2 (2021), 1–17.
    [2] Ames, S. L., Wolffsohn, J. S., and Mcbrien, N. A. The development of a symptom questionnaire for assessing virtual reality viewing using a head-mounted display. Optometry and Vision Science 82, 3 (2005), 168–176.
    [3] Ang, S., and Quarles, J. Gingervr: An open source repository of cybersickness reduction techniques for unity, 2020.
    [4] Aykent, B., Merienne, F., Guillet, C., Paillot, D., and Kemeny, A. Motion sickness evaluation and comparison for a static driving simulator and a dynamic driving simulator. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 228, 7 (2014), 818–829.
    [5] Baños, R. M., Botella, C., Garcia-Palacios, A., Villa, H., Perpiñá, C., and Alcaniz, M. Presence and reality judgment in virtual environments: a unitary construct? CyberPsychology & Behavior 3, 3 (2000), 327–335.
    [6] Benedek, M., and Kaernbach, C. A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods 190, 1 (2010), 80–91.
    [7] Bouchard, S., Côté, S., St-Jacques, J., Robillard, G., and Renaud, P. Effectiveness of virtual reality exposure in the treatment of arachnophobia using 3d games. Technology and health care 14, 1 (2006), 19–27.
    [8] Bozgeyikli, E., Raij, A., Katkoori, S., and Dubey, R. Point & Teleport Locomotion Technique for Virtual Reality. 2016.
    [9] Budhiraja, P., Miller, M. R., Modi, A. K., and Forsyth, D. Rotation blurring: use of artificial blurring to reduce cybersickness in virtual reality first person shooters. arXiv preprint arXiv:1710.02599 (2017).
    [10] Bystrom, K.-E., Barfield, W., and Hendrix, C. A conceptual model of the sense of presence in virtual environments. Presence: Teleoperators & Virtual Environments 8,(1999), 241–244.
    [11] Caserman, P., Garcia-Agundez, A., Gámez Zerban, A., and Göbel, S. Cybersickness in current-generation virtual reality head-mounted displays: systematic review and outlook. Virtual Reality 25, 4 (2021), 1153–1170.
    [12] Chen, C.-Y., Chuang, C.-H., Tsai, T.-L., Chen, H.-W., and Wu, P.-J. Reducing cybersickness by implementing texture blur in the virtual reality content. Virtual Reality 26, 2 (2022), 789–800.
    [13] Chu, S.-Y., Cheng, Y.-T., Lin, S. C., Huang, Y.-W., Chen, Y., and Chen, M. Y. Motionring: Creating illusory tactile motion around the head using 360° vibrotactile headbands. ACM.
    [14] Danieau, F., Fleureau, J., Guillotel, P., Mollet, N., Lćuyer, A., and Christie, M.Hapseat: Producing motion sensation with multiple force-feedback devices embedded in a seat. In Proceedings of the 18th ACM Symposium on Virtual Reality Software and Technology, VRST ’12, Association for Computing Machinery, p. 69–76. e.
    [15] Dennison, M. S., and D’Zmura, M. Cybersickness without the wobble: Experimental results speak against postural instability theory. Applied ergonomics 58 (2017), 215–223.
    [16] Dennison, M. S., Wisti, A. Z., and D’Zmura, M. Use of physiological signals to predict cybersickness. DISPLAYS 44 (SEP 2016), 42–52.
    [17] D’Amour, S., Bos, J. E., and Keshavarz, B. The efficacy of airflow and seat vibration on reducing visually induced motion sickness. Experimental Brain Research 235, 9 (2017), 2811–2820.
    [18] Fernandes, A. S., and Feiner, S. K. Combating vr sickness through subtle dynamic field-of-view modification. In 2016 IEEE symposium on 3D user interfaces (3DUI) (2016), IEEE, pp. 201–210.
    [19] Frank, L. H., Casali, J. G., and Wierwille, W. W. Effects of visual display and motion system delays on operator performance and uneasiness in a driving simulator. Human Factors: The Journal of the Human Factors and Ergonomics Society 30, 2 (1988),201–217.
    [20] Gardé, A., Léger, P.-M., Sénécal, S., Fredette, M., Labonté-Lemoyne, E., Courtemanche, F., and Ménard, J.-F. The Effects of a Vibro-Kinetic Multi-Sensory Experience in Passive Seated Vehicular Movement in a Virtual Reality Context. 2018.
    [21] Golding, J. F. Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Research Bulletin 47, 5 (1998), 507–516.
    [22] Greenlee, M. W., Frank, S. M., Kaliuzhna, M., Blanke, O., Bremmer, F., Churan, J.,Cuturi, L. F., MacNeilage, P. R., and Smith, A. T. Multisensory integration in self motion perception. Multisensory Research 29, 6-7 (2016), 525–556.
    [23] Gruden, T., Popović, N. B., Stojmenova, K., Jakus, G., Miljković, N., Tomažič, S.,and Sodnik, J. Electrogastrography in autonomous vehicles—an objective method for assessment of motion sickness in simulated driving environments. Sensors 21, 2(2021), 550.
    [24] Guna, J., Geršak, G., Humar, I., Song, J., Drnovšek, J., and Pogačnik, M. Influence of video content type on users’virtual reality sickness perception and physiological response. Future Generation Computer Systems 91 (2019), 263–276.
    [25] Habgood, M. J., Moore, D., Wilson, D., and Alapont, S. Rapid, continuous movement between nodes as an accessible virtual reality locomotion technique. In 2018 IEEE conference on virtual reality and 3D user interfaces (VR) (2018), IEEE, pp. 371–378.
    [26] Herlan, A., Ottenbacher, J., Schneider, J., Riemann, D., and Feige, B. Electrodermal activity patterns in sleep stages and their utility for sleep versus wake classification. Journal of Sleep Research 28, 2 (2019), e12694.
    [27] Hu, S., Grant, W. F., Stern, R. M., and Koch, K. L. Motion sickness severity and physiological correlates during repeated exposures to a rotating optokinetic drum. Aviation, space, and environmental medicine (1991).
    [28] Hussain, R., Chessa, M., and Solari, F. Mitigating cybersickness in virtual reality systems through foveated depth-of-field blur. Sensors 21, 12 (2021), 4006.
    [29] Jung, S., Li, R., Mckee, R., Whitton, M. C., and Lindeman, R. W. Floor-vibration vr: Mitigating cybersickness using whole-body tactile stimuli in highly realistic vehicle driving experiences. IEEE Transactions on Visualization and Computer Graphics 27, 5 (2021), 2669–2680.
    [30] Kala, N., Lim, K., Won, K., Lee, J., Lee, T., Kim, S., and Choe, W. P-218: An approach to reduce vr sickness by content based field of view processing. SID Symposium Digest of Technical Papers 48, 1 (2017), 1645–1648.
    [31] Katsigiannis, S., Willis, R., and Ramzan, N. A qoe and simulator sickness evaluation of a smart-exercise-bike virtual reality system via user feedback and physiological signals. IEEE Transactions on Consumer Electronics 65, 1 (2018), 119–127.
    [32] Kennedy, R. S., Drexler, J. M., Compton, D. E., Stanney, K. M., Lanham, D. S., and Harm, D. L. Configural scoring of simulator sickness, cybersickness, and space adaptation syndrome: Similarities and differences. Lawrence Erlbaum Associates Publishers, Mahwah, NJ, US, 2003, pp. 247–278.
    [33] Kennedy, R. S., Lane, N. E., Berbaum, K. S., and Lilienthal, M. G. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The international journal of aviation psychology 3, 3 (1993), 203–220.
    [34] Kim, H. K., Park, J., Choi, Y., and Choe, M. Virtual reality sickness questionnaire (vrsq): Motion sickness measurement index in a virtual reality environment. Applied ergonomics 69 (2018), 66–73.
    [35] Kim, Y. Y., Kim, H. J., Kim, E. N., Ko, H. D., and Kim, H. T. Characteristic changes in the physiological components of cybersickness. Psychophysiology 42, 5 (2005), 616–625.
    [36] Käser, D. P., Parker, E., Glazier, A., Podwal, M., Seegmiller, M., Wang, C.-P., Karlsson, P., Ashkenazi, N., Kim, J., Le, A., and et al. The making of Google earth VR. 2017.
    [37] König, S. U., Schumann, F., Keyser, J., Goeke, C., Krause, C., Wache, S., Lytochkin, A., Ebert, M., Brunsch, V., Wahn, B., and et al. Learning new sensorimotor contingencies: Effects of long-term use of sensory augmentation on the brain and conscious perception. PLOS ONE 11, 12 (2016), e0166647.
    [38] Laviola, J. J. A discussion of cybersickness in virtual environments. ACM SIGCHI Bulletin 32, 1 (2000), 47–56.
    [39] Lee, J., Kim, M., and Kim, J. A study on immersion and vr sickness in walking interaction for immersive virtual reality applications. Symmetry 9, 5 (2017), 78.
    [40] Liu, S.-H., Yen, P.-C., Mao, Y.-H., Lin, Y.-H., Chandra, E., and Chen, M. Y. Headblaster: A wearable approach to simulating motion perception using head-mounted air propulsion jets. ACM Trans. Graph. 39, 4 (2020).
    [41] Lucas, G., Kemeny, A., Paillot, D., and Colombet, F. A simulation sickness study on a driving simulator equipped with a vibration platform. Transportation Research Part F: Traffic Psychology and Behaviour 68 (2020), 15–22.
    [42] Magaki, T., and Vallance, M. Developing an accessible evaluation method of vr cybersickness. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (2019), IEEE, pp. 1072–1073.
    [43] Matsuura, Y., and Takada, H. Comparison of electrogastrograms in a seated posture with those in a supine posture using wayland algorithm. In 2018 13th International Conference on Computer Science & Education (ICCSE) (2018), IEEE, pp. 1–5.
    [44] Mcgill, M., Ng, A., and Brewster, S. I Am The Passenger. 2017.
    [45] Myles, K., Kalb, J. T., Lowery, J., and Kattel, B. P. The effect of hair density on the coupling between the tactor and the skin of the human head. Applied Ergonomics 48 (2015), 177–185.
    [46] Ng, A. K. T., Chan, L. K. Y., and Lau, H. Y. K. A study of cybersickness and sensory conflict theory using a motion-coupled virtual reality system. DISPLAYS 61 (2020).
    [47] Nie, G.-Y., Duh, H. B.-L., Liu, Y., and Wang, Y. Analysis on mitigation of visually induced motion sickness by applying dynamical blurring on a user’s retina. IEEE Transactions on Visualization and Computer Graphics 26, 8 (2020), 2535–2545.
    [48] OMAN, C. Motion sickness - a synthesis and evaluation of the sensory conflict theory. CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 68, 2(FEB 1990), 294–303. SYMP ON NAUSEA AND VOMITING : A MULTIDISCIPLINARY PERSPECTIVE, OTTAWA, CANADA, NOV 12-13, 1988.
    [49] Oman, C. M. Sensory conflict in motion sickness: an observer theory approach. Pictorial communication in virtual and real environments (1991), 362–376.
    [50] Patterson, R., Winterbottom, M. D., and Pierce, B. J. Perceptual issues in the use of head-mounted visual displays. Human Factors 48, 3 (2006), 555–573. PMID:17063969.
    [51] Peng, Y.-H., Yu, C., Liu, S.-H., Wang, C.-W., Taele, P., Yu, N.-H., and Chen, M. Y. Walkingvibe: Reducing virtual reality sickness and improving realism while walking
    in vr using unobtrusive head-mounted vibrotactile feedback. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (2020), pp. 1–12.
    [52] Prothero, J. D., and Furness, T. A. The Role of Rest Frames in Vection, Presence and Motion Sickness. PhD thesis, USA, 1998. AAI9836238.
    [53] Rank, M., Shi, Z., and Hirche, S. Perception of delay in haptic telepresence systems. Presence: Teleoperators and Virtual Environments 19, 5 (2010), 389–399.
    [54] Ren, D., Goldschwendt, T., Chang, Y., and Hollerer, T. Evaluating wide-field-of-view augmented reality with mixed reality simulation. 2016.
    [55] Shi, R., Liang, H.-N., Wu, Y., Yu, D., and Xu, W. Virtual reality sickness mitigation methods. Proceedings of the ACM on Computer Graphics and Interactive Techniques 4, 1 (2021), 1–16.
    [56] Slater, M., Steed, A., McCarthy, J., and Maringelli, F. The influence of body movement on subjective presence in virtual environments. Human factors 40, 3 (1998),469–477.
    [57] Solla. Variable-lra-frequencies-on-drv2605. https://github.com/Solla/ Variable-LRA-Frequencies-on-DRV2605, 2021.
    [58] Sra, M., Jain, A., and Maes, P. Adding Proprioceptive Feedback to Virtual Reality Experiences Using Galvanic Vestibular Stimulation. 2019.
    [59] Stanney, K., Fidopiastis, C., and Foster, L. Virtual reality is sexist: but it does not have to be. Frontiers in Robotics and AI 7 (2020), 4.
    [60] Stone III, W. B. Psychometric evaluation of the Simulator Sickness Questionnaire as a measure of cybersickness. PhD thesis, Iowa State University, 2017.
    [61] Terenzi, L., and Zaal, P. Rotational and translational velocity and acceleration thresholds for the onset of cybersickness in virtual reality. In AIAA Scitech 2020 forum (2020), p. 0171.
    [62] Usoh, M., Arthur, K., Whitton, M. C., Bastos, R., Steed, A., Slater, M., and Brooks Jr,F. P. Walking> walking-in-place> flying, in virtual environments. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (1999), pp. 359–364.
    [63] Usoh, M., Catena, E., Arman, S., and Slater, M. Using presence questionnaires in reality. Presence 9, 5 (2000), 497–503.
    [64] Venkatakrishnan, R., Venkatakrishnan, R., Anaraky, R. G., Volonte, M., Knijnenburg, B., and Babu, S. V. A Structural Equation Modeling Approach to Understand the Relationship between Control, Cybersickness and Presence in Virtual Reality. 2020.
    [65] Wang, B., and Rau, P.-L. P. Effect of Vibrotactile Feedback on Simulator Sickness, Performance, and User Satisfaction with Virtual Reality Glasses. Model and Data Engineering, 2019, p. 291–302.
    [66] Weech, S., Moon, J., and Troje, N. F. Influence of bone-conducted vibration on simulator sickness in virtual reality. PLOS ONE 13, 3 (2018), 1–21.
    [67] Weech, S., and Troje, N. F. Vection latency is reduced by bone-conducted vibration and noisy galvanic vestibular stimulation. Multisensory Research 30, 1 (2017), 65–90.
    [68] Weech, S., Wall, T., and Barnett-Cowan, M. Reduction of cybersickness during and immediately following noisy galvanic vestibular stimulation. Experimental Brain Research 238, 2 (2020), 427–437.
    [69] Weissker, T., Kunert, A., Frohlich, B., and Kulik, A. Spatial Updating and Simulator Sickness During Steering and Jumping in Immersive Virtual Environments. 2018.
    [70] Werrlich, S., Daniel, A., Ginger, A., Nguyen, P.-A., and Notni, G. Comparing hmd-based and paper-based training. In 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (2018), IEEE, pp. 134–142.
    [71] Wienrich, C., Weidner, C. K., Schatto, C., Obremski, D., and Israel, J. H. A virtual nose as a rest-frame-the impact on simulator sickness and game experience. In 2018 10th international conference on virtual worlds and games for serious applications (VS-Games) (2018), IEEE, pp. 1–8.
    [72] Witmer, B. G., Jerome, C. J., and Singer, M. J. The factor structure of the presence questionnaire. Presence: Teleoperators & Virtual Environments 14, 3 (2005), 298–312.
    [73] Witmer, B. G., and Singer, M. J. Measuring presence in virtual environments: A presence questionnaire. Presence 7, 3 (1998), 225–240.
    [74] Yates, B., Miller, A., and Lucot, J. Physiological basis and pharmacology of motion sickness: An update. BRAIN RESEARCH BULLETIN 47, 5 (NOV 15 1998), 395–406.
    [75] 林琮珉. 藉由環繞於頭部周遭的慣性力式規律震動回饋增進虛擬實境動態體驗. Master thesis, 2022.
    [76] 王中瑋. 用於減緩虛擬實境暈眩之輔助系統. Master thesis, 2022.

    QR CODE