簡易檢索 / 詳目顯示

研究生: 廖德超
Teh-Chau Liau
論文名稱: 電磁誘導透明材料的光學特性及其潛在應用
Optical Characteristics of Ellectromagnetically Induced Transparency Materials and Its Available Applications
指導教授: 蘇順豐
Shun-Feng Su
沈建其
Jian-Qi Shen
口試委員: 蘇順豐
Shun-Feng Su
蔡清池
Ching-Chih Tsai
李祖添
Tsu-Tian Lee
陳美勇
Mei-Yung Chen
王偉彥
Wei-Yen Wang
王乃堅
Nai-Jian Wang
姚立德
Leether Yao
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 79
中文關鍵詞: 電磁誘導透明(EIT)光前驅波索瑪菲爾前驅波無損電漿布里洛印前驅波溫度偵測自發輻射衰減率(SDR)三能級原子系統電磁誘導透明蒸汽腔都卜勒展寬
外文關鍵詞: Electromagnetically Induced Transparency (EIT), Optical precursor, Sommerfeld precursor, Lossless Plasma, Brilloin forerunner, Temperature Sensing, Spontaneous Decay Rate (SDR), Three-Level Atomic Systems, EIT-Vapor Cell, Doppler Broadening
相關次數: 點閱:53下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著材料光學內容本身的拓展和人工設計控制材料結構手段的提升,與光學物理、電子信息和材料科學有關的交叉研究主題引起了人們的廣泛興趣。本博士論文對幾種與原子多能級躍遷有關的量子相干效應(及其經典類比效應)有關的著名光學特性進行了探討,包括電磁誘導透明(EIT)現象、相干居量捕獲、強色散與光速減慢、無反轉雷射、EIT 材料的都普勒效應展寬等。這些效應都是屬於本論文所研究的電磁誘導透明材料內的典型光學特性。本論文提出了一種共振微帶線的設計,並配備了兩個一下一右的扇型微條線振盪線路設計,有效地模擬了EIT 行為的特性。本論文詳細推導了光學先驅通過無損耗電漿層(其行為類似於EIT 板層)的經典理論公式與它的精確解析解, 對於階躍型餘弦波垂直入射無損的任意厚度電漿板層後,在出口處出現的兩種前驅波, 先出去的是索瑪菲爾光前驅波(Sommerfeld Precursor), 稍後出去的是布里淵光前驅波(Brillouin Forerunner),而最後出去的才是帶著能量前進的波包能量波(群速波)。最後本文提出,透過電磁誘導透明(EIT)蒸氣板層(厚度為探測光波長的1.2 倍) 進行溫度感測的最佳配置需要提80 倍的自發性衰變率(SDR)的驅動場強。觀察到,反射率和透射率都在零到一的範圍內變化,能夠涵蓋從絕對零度(0 K)到600 K 的廣泛溫度範圍。這項技術的研究,提供了一種嶄新的溫度感測方式,有望在各個領域中發揮其重要性。例如,在精密製造、化學反應監控、生物醫學應用等領域,準確的溫度控制是至關重要的。我們期待這項技術能在未來的科學研究和技術應用中發揮可能的作用。我們將繼續探索和學習,期待能在這個領域中進一步完善我們的方案。


    With the expansion of the optical content of materials and the enhancement of artificial design control methods, cross-research topics related to optical physics, electronic information, and material science have aroused widespread interest. This doctoral thesis explores several famous optical properties related to quantum coherent effects (and their classical analog effects) related to atomic multi-level transitions, including Electromagnetically Induced Transparency (EIT) phenomena, coherent population trapping, strong dispersion and light speed reduction, non-reversal lasers,Doppler effect broadening of EIT materials, etc. These effects are typical optical characteristics in the EIT materials studied in this thesis. A design of a resonant microstrip line is proposed in this thesis, equipped with two oscillating line designs of fan-shaped microstrip lines, one down and one right, effectively simulating the characteristics of EIT behavior. This thesis derives in detail the classical theoretical formula and its exact analytical solution for the optical precursor passing through the lossless plasma layer (whose behavior is similar to the EIT layer). For the step-type cosine wave vertically incident on the lossless plasma layer of any thickness, two types of precursor waves appear at the exit, the first one is the Sommerfeld light precursor, the later one is the Brillouin light precursor, and the last one is the wave packet energy wave (group speed wave) carrying energy forward. Finally, this paper proposes that the optimal configuration for temperature sensing through the Electromagnetically Induced Transparency (EIT) vapor layer (thickness is 1.2 times the wavelength of the probe light) requires a driving field strength of 80 times the spontaneous decay rate (SDR). It is observed that the reflectance and transmittance vary within the range of zero to one, covering a wide temperature range from absolute zero (0 K) to 600 K. The research of this technology provides a novel temperature sensing method, which is expected to play its importance in various fields. For example, in precision manufacturing, chemical reaction monitoring, biomedical applications, and other fields, accurate temperature control is crucial. We look forward to this technology playing a possible role in future scientific research and technical applications. We will continue to explore and learn, hoping to further improve our scheme in this field.

    中文摘要 I Abstract II 誌謝(Acknowledgement) IV Keywords V List of Symbols and Abbreviations VI List of Figures VII List of Tables XI Contents XII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Structure of the Thesis 5 Chapter 2 Optical Characteristics of EIT Material 6 2.1 Dispersion 7 2.2 Lasing Without Inversion 9 2.3 Coherent Population Trapping 10 2.4 Electromagnetically Induced Transparency 12 2.5 The Slowest Light 13 2.6 Doppler Effect Broadening 15 Chapter 3 Resonant Micro-strip Line Analog to EIT Material 17 3.1 Density Matrix Expression for three-level EIT atomic system 17 3.2 Circuit Analog to a Three-Level Atomic System 20 3.3 Implement Using Two Resonant Microstrip Lines with Radial Stubs 22 Chapter 4 Exact Analysis of Optical Precursor in Lossless Plasma 26 4.1 The Meaning of Lossless Plasma 26 4.2 Theory 26 4.3 Results 32 Chapter 5 Temperature sensing via EIT-Vapor 34 5.1 Commonly used Temperature Sensor 34 5.2 Materials and Methods 37 5.2.1 The Relative Dielectric Constant of a Typical EIT-Vapor 38 5.2.2 FWHM of Transparency Windows 43 5.2.3 Reflectance, Transmittance, and Absorption 48 5.3 Temperature Sensing Data Records 54 5.4 Discussion 57 5.5 Conclusion Remarks 62 Chapter 6 Conclusions and Future works 64 References 69

    1. C. Gerry, P. Knight, Introductory Quantum Optics, published online by Cambridge
    University Press., ISBN: 9781009415293, 2008.
    2. P. Bitzenbauer, J. M. Veith, B. Girnat and J. P. Meyn, “Assessing engineering
    students’ conceptual understanding of introductory quantum optics,” J. Phys., vol.
    4, pp. 1180-1201, 2022.
    3. S. G. Hofer, W. Wieczorek, M. Aspelmeyer, and K. Hammerer, “Quantum
    entanglement and teleportation in pulse cavity optomechanics,” Phys. Rev. A vol.
    84, pp. 052327-1~052327-10, 2011.
    4. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced
    transparency: Optics in coherent media,” R. of Mod. Phys., vol. 77, no. 2, 2008.
    5. B. D. Agapev, M. B. Gornyi, B. G. Matisov, and Yu. V. Rozhdesvenskii, “Coherent
    population trapping in quantum system,” Phys..-Uspekhi. vol. 36, no. 763, 1993.
    6. W. E. van der Veer, R. J. J. van Diest, A. Donszelmann, and H. B. van Linden van
    den Heuvell, “Experimental demonstration of light amplification without
    population inversion,” Phys. Rev. Lett, vol. 70, no. 21, pp. 3243~3246, 1993.
    7. P. DelHaye, A. Coillet, T. Fortier, K. Beha, D. C. Cole, K. Y. Yang, H. Lee, K. J.
    Vahala, S. B. Rapp, and S. A. Diddams, “Phase-coherence microwave-to-optical
    link with a self-referenced microrcomb,” N. Photo., vol. 10, pp. 516-520, 2016.
    8. A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, “Pulse-bandwidth
    dependence of coherent phase control of resonance-mediated (2+1) three-photon
    absorption,” Phys. Rev. A, vol. 76, pp. 053419-1~053419-9, 2007.
    9. H. R. Xia, C. Y. Yeh, and S.Y. Zhu, “Experimental observation of spontaneous
    emission cancellation,” Phys. Rev. Lett., vol. 77, no. 6, pp. 1032~1034, 1996.
    10. C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical of
    electromagnetically induced transparency,” Am. J. Phys. vol. 70, pp. 37-41, 2002.
    11. T. Ripper, “A simple method for observing precursors in water waves,” Am. J. Phys.
    vol. 78, pp. 134–138, 2010.
    12. K. E. Oughstun, “Optimal pulse penetration in Lorentz-Model dielectrics using the
    Sommerfeld and Brillouin precursors,” Optic, Exp., vol. 23, no. 20, pp.
    26604~26616, 2015.
    13. B. Macke and B. Segard, “Comment on ---Optical precursors in the singular and
    weak dispersion limits,” J. Opt. Soc. Am. B, vol. 28, no. 3, pp. 450~452, 2011.
    14. P. K. Jakobsen and M. Mansuripur, “On the nature of the Sommerfeld-Brillouin
    forerunners (or precursors),” Quantum Studies: Mathematics and Foundations,
    vol. 7, pp. 1~25, 2019.
    15. H. Jeong, Ulf. L. Osterberg, and T. Hansson, “Evolution of Sommerfeld and
    Brillouin precursors in intermediate spectral regimes,” J. Opt. Soc. Am. B, vol. 26,
    no. 12, pp. 2455~2460, 2009.
    16. H. Jeong, A. M.C. Dawes, and D. J. Gauthier, “Direct observation of optical
    precursors in a region of anomalous dispersion,” Phys. Rev. Lett. Vol. 96, pp.
    143901-1~143901-4, 2006.
    17. D. Wei, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. W. Du, “Optical precursors
    with electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett.,
    vol. 103, pp. 093602-1~093602-4, 2009.
    18. S. W. Du, C. Belthangady, P. Kolchin, G. Y. Yin, and S. E. Harris, “Observation of
    optical precursors at the biphoton level,” Optic. Lett., vol. 33, no. 18, pp. 2149-
    2151, 2008.
    19.A. Vazquez Alejos, M. Dawood, and F. Falcone, “Temporal and frequency
    evolution of Brillouin and Sommerfeld precursors through dispersive media in
    THz-IR bands,” IEEE Trans.. on Ant. and Prop., vol. 60, no. 12, pp. 5900~5913,
    2012.
    20. Ulf. Osterberg, D. Andersson, and M. Lisak, “On precursor propagation in linear
    dielectrics,” Optic. Comm. vol. 277, pp. 5-13, 2007.
    21. A. E. Dmitrievm and O. M. Parshkov, “Peculiarities of the evolution of a
    precursor pulse in the shaping of quasi-resonance self-induced transparency
    pulses,” Quan. Elec vol. 34 (8), pp. 739-743, 2004.
    22. E. Candes, L. Demanet, and L. Ying, “Fast computation of fourier intrgral
    operators,” Soc. for Indus. and App. Math., vol. 29, no. 6, pp. 2464–2493, 2007.
    23. J. Kalcik, K. Sima, and R. Soukup, “Textile hybrid thread thermocouples,” in 44th
    Int. Spring Sem. on Elect. Tech. (ISSE), IEEE 978-1-6654-1477-7/ 20, 2021.
    24. A. Nasri, M. Petrissans, V. Fierro, and A. Celzard, “Gas sensing based on organic
    composite materials: review of sensor types progresses and challenge,” Mat. Sci. in
    Semi. Pro. vol. 128, pp. 105744-1~105744-16, 2021.
    25. N. Neella, M. M. Nayak, and K. Rajanna, “Nanocomposite films on mylar for
    temperature sensing applications,” in AIP Conf. Proc. 1832, pp. 060027-1~060027-
    3, 2017.
    26. J. Y. Cai, M. J. Du, and Z. L. Li, “Flexible temperature sensors constructed with
    fiber materials,” Adv. Mat. Tech., vol. 7, pp. 2101182-1~2101182-16, 2022.
    27. A. Rogalski, “Recent progress in infrared detector technologies,” Infrared Physics
    & Technology vol. 54, pp. 136–154, 2011.
    28. C. Lin, A. J. Steckl, and J. Scofield, “SiC thin-film Fabry-Perot interferometer fiberoptic
    temperature sensors,” IEEE Trans. on Elect. Dev., vol. 50, no. 10, pp.
    2159~2164, 2003
    29. C. Fabre and N. Treps, “Modes and states in quantum optics,” American Physical
    Society, Reviews of Modern Physics, vol. 92, no. 3, pp. 035005-1~035005-40, 2020.
    30. J Mompart and R Corbalan, “Lasing without inversion,” J. of Optic. B: Quan. and
    Semi. Optic., vol. 2, pp. R7~R24, 2000.
    31. H. R. Xia, C. Y. Yeh, and S. Y. Zhu, “Experimental observation of spontaneous
    emission cancellation,” Phys. Rev. Lett., vol. 77, no. 6, 1996.
    32. J. Vanier, A. Godone, and F. Levi, “Coherent population trapping in cesium: dark
    lines and coherent microwave emission,” Phys. Rev. A vol. 58, no. 3, 1998.
    33. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light
    propagation,” Nature vol. 406, pp. 277-279, 2000.
    34. Xin-You Lu, Jia-Hua Li, Ji-Bing Liu, and Jin-Ming Luo, “Optical bi-stability via
    quantum interferences in a four-level medium,” J. Phys. B: At. Mol. Opt. Phys. vol.
    39, pp. 5161–5171, 2006.
    35. A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of
    electromagnetically induced transparency resonance in a Doppler-broadened
    medium,” Phys. Rev. A, vol. 66, pp. 013805-1~013805-4, 2002.
    36. A. M. Akulshin, A. Cimmino, and G. I. Opat, “Negative group velocity of a light
    pulse in cesium vapor,” Quan. Elect. vol. 32 (7), pp. 567-569 2002.
    37. D. E. Jones, J. D. Franson, and T. B. Pittman, “Ladder-type electromagnetically
    induced transparency using nanofiber-guided light in a warm vapor,” Phys. Rev. A,
    vol. 92, pp. 043806-1~043806-5, 2015.
    38. Rui-Min Guo, Feng Xiao, Cheng Liu, Yu Zhang, and Xu-Zong Chen, “Dependence
    of electromagnetically induced transparency on laser linewidth,” Chin. Phys. Lett.,
    vol. 20, no. 9, pp. 1507~1510, 2003.
    39. J. Wang, Y. Wang, S. Yan, T. Liu, and T. Zhang, “Observation of sub-Doppler
    absorption in a Lambda-type three-level Doppler-broadened cesium system,” Appl.
    Phys. B: Laser and Optics, vol. 78, pp. 217–220 2004.
    40. J. E. Bjorkholm, P. F. Liao, and A. Wokaun, “Distortion of on-resonance twophoton
    spectroscopic line shapes caused by velocity-selective optical pumping,”
    Phys. Rev. A, vol. 26, no. 5, pp. 2643~2655, 1982.
    41. A. Bhattacharjee, S. Sanyal, and K. R. Dastidar, “Amplification without population
    inversion in molecules,” J. of Molec. Spec. vol. 232, pp. 264–278, 2005.
    42. A. Lazoudis, E. Ahmed, L. Li, T. Kirova, P. Qi, A. Hansson, J. Magnes, F. C. Spano,
    and A. M. Lyyra, “The role of Doppler broadening in electromagnetically induced
    transparency and Autler-Townes splitting in open molecular system,” Am. Phys.
    Soc., vol. 1, no. 15, 2005.
    43. L. Li, and G. Huang, “Linear and nonlinear light propagations in a Dopplerbroadened
    medium via electromagnetically induced transparency,” Phys. Rev. A,
    vol. 82, pp. 023809-1~023809-13, 2010.
    44. A. Karawajczyk, “Lasers without inversion in a Doppler-broadened medium,” Phys.
    Rev. A, vol. 51, no. 1, 1995.
    45. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to
    17 meters per second in an ultracold atom gas,” Nature (London) vol. 397, pp.
    594-598, 1999.
    46. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today, vol. 50,
    no.7, pp. 36-42, 1997.
    47. C. Champenois, G. Morigi and J. Eschner, “Quantum coherence and population
    trapping in three-photon processes,” Phys. Rev. A, vol. 74, pp. 053404-1~053404
    -5, 2006.
    48. J. L. Cohen, and P. R. Berman, “Amplification without inversion: understanding
    probability amplitudes, quantum interference, and Feynman rules in a strongly
    driven system,” Phys. Rev. A, vol. 55, pp. 3900-3917, 1997.
    49. A. M. Zheltikov, “Phase coherence control and subcycle transient detection in
    nonlinear Raman scattering with ultrashort laser pulses,” Phys. Rev. A, vol. 74,
    pp. 053403-1~053404-10, 2006.
    50. A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, “Coherent phase control of
    resonance-mediated (2+1) three-photon absorption,” Phys. Rev. A, vol. 75, pp.
    031401-1~031401-4, 2007.
    51. S. Y. Zhu, and M. O. Scully, “Spectral line elimination and spontaneous emission
    cancellation via quantum interference,” Phys. Rev. Lett., vol. 76, pp. 388-391, 1996.
    52. M. O. Scully, and M. S. Zubairy, Quantum Optics, Chap. 7, Cambridge University
    Press., ISBN: 9780521435956, 1997.
    53. Xi. Chen, , X. M. Leng, J. X. Li, Y. T. Yeh, T. C. Liau, J. Q. Shen, Y. H. Kao, and T.
    J. Yang, “Experimental verification of circuit analog of three- and four-level
    electromagnetically induced transparency,” Adv. Mater. Res., vols. 415-417, pp.
    1340-1349, 2012.
    54. L. Brillouin, Wave Propagation and Group Velocity, New York Academic Press,
    ISBN: 9780121349684, 1960.
    55. P. Wyns, D. P. Foty, and K. E. Oughstun. “Numerical analysis of the precursor fields
    in linear dispersive pulse propagation,” J. of the Opt. Soc. of America A vol. 6, issue
    9, pp. 1421-1429. 1989.
    56. A. Ciarkowski, “On Sommerfeld precursor in a Lorentz medium,” arXiv preprint
    physics/0412065, vol. 1, pp. 1-19, 2004.
    57. K. E. Oughstun, , et al.. “Optical precursors in the singular and weak dispersion
    limits,” J. Opt. Soc. Amer. B, vol. 27 (8), pp. 1664-1670, 2010.
    58. B. Macke, and B. Ségard. “Simple asymptotic forms for Sommerfeld and Brillouin
    precursors.” Phys. Rev. A, vol. 86 (1), pp. 013837-1~013837-13, 2012.
    59. B. Macke, and B. Ségard. “From Sommerfeld and Brillouin forerunners to optical
    precursors,” Phys. Rev. A, vol. 87 (4): pp. 043830-1~043830-0, 2013.
    60. R. Uitham, and B. Hoenders. “The Sommerfeld precursor in photonic crystals.” Opt.
    Commnun., vol. 262 (2), pp. 211-219, 2006.
    61. R. Uitham, and B. Hoenders. “The electromagnetic Brillouin precursor in onedimensional
    photonic crystals,” Opt. Commun., vol. 281 (23), pp. 5910-5918, 2008.
    62. H. Jeong, “Direct observation of optical precursors in a cold potassium gas,”
    Doctral desertation, Department of Physics, Graduate School of Duke University,
    2006.
    63. B. Macke, and B. Ségard. “Optical precursors in transparent media,” Phys. Rev. A,
    vol. 80 (1), pp. 011803-1~011803-4, 2009.
    64. D. Wei, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and Shengwang Du. “Optical
    precursors with electromagnetically induced transparency in cold atoms,” Phys.
    Rev. Lett,. vol. 103 (9), pp. 093602-1~093602-4, 2009.
    65. B. Macke and B. Ségard. “Optical precursors with self-induced transparency,” Phys.
    Rev. A, vol. 81 (1), pp. 015803-1~015803-4, 2010.
    66. G. A. Campbell, and R. M. Foster, Fourier integrals for practical applications, New
    York, NY, Van Nostrand, p. 180, 1951.
    67. W. Root, T. Bechtold, and T. Pham, “Textile-integrated thermocouples for
    temperature measurement,” Materials, vol. 13, pp. 626–648, 2020.
    68. S. Pourteimoor, and H. Haratizadeh, “Performance of a fabricated nanocompositebased
    capacitive gas sensor at room temperature,” J. Mater. Sci. Mater. Electron.,
    vol. 28, pp. 18529–18534, 2017.
    69. N. J. Blasdel, E. K. Wujcik, J. Carletta, K. S. Lee, and C. N. Monty, “Fabric
    nanocomposite resistance temperature detector,” IEEE Sens. J. 15, 300–306, (2015).
    70. D. Katerinopoulou, P. Zalar, J. Sweetssen, G. Kiriakidis, C. Rentrop, P. Groen, H.
    Gerwin, G. H. Gelinck, Brand J. Van der, and E. Smit, “Large-area all-Printed
    temperature sensing surfaces using novel composite thermistor materials,” Adv.
    Electron. Mater. vol. 5, pp. 1800605-1~1800605-7, 2019.
    71. P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characterization of surfacemicromachined
    silicon nitride membranes for thermal infrared detectors,” J.
    Microelectromechanical Sys., vol. 6, no. 1, pp. 55–61, 1997.
    72. L. Cheng, A. J. Steckl, and J. D. Scofield, “Effect of trimethylsilane flow rate on
    the growth of SiC thin-films for fiber-optic temperature sensors,” J.
    Microelectromechanical Sys., vol. 12, no. 6, pp. 797–803, 2003.
    73. M. O. Scully, and M. S. Zubairy, Quantum Optics, Cambridge University Press: pp.
    220–245, ISBN: 9780521435956, 1997.
    74. J. L. Cohen, and P. R. Berman, “Amplification without inversion: understanding
    probability amplitudes, quantum interference, and Feynman rules in a strongly
    driven system,” Phys. Rev. A, vol. 55, pp. 3900–3917, 1997.
    75. S. Y. Zhu, and M. O. Scully, “Spectral line elimination and spontaneous emission
    cancellation via quantum interference,” Phys. Rev. Lett., vol. 76, pp. 388–391, 1996.
    76. C. M. Krowne, and J. Q. Shen, “Dressed-state mixed-parity transitions for realizing
    negative refractive index,” Phys. Rev. A, vol. 79, pp. 023818-1~023818-11, 2009.
    77. J. Q. Shen, “Negatively refracting atomic Vapor,” J. of Mod. Opt. vol. 53 (15), pp.
    2195–2205, 2007.
    78. J. Q. Shen, and P. Zhang, “Double-Control quantum interferences in a four-level
    atomic system,” Opt. Express, vol. 15, pp. 6484–6493, 2007.
    79. C. Y. Ye, and A. S. Zibrov, “Width of the electromagnetically induced transparency
    resonance in atomic vapor,” Phys. Rev. A, vol. 65, pp. 023806-1~023806-5, 2002.
    80. D. Hockel, and O. Benson, “Electromagnetically induced transparency in cesium
    vapor with probe pulses on the single-photon level,” Phys. Rev. Lett., vol. 105, pp.
    153605-1~153605-4, 2010.
    81. R. Finkelstein, S. Bali, O. Firstenberg, and I. Novikova, “A practical guide to
    electromagnetically induced transparency in atomic vapor,” New J. Phys, vol. 25,
    pp. 035001-1~035025, 2023.
    82. B. L. Lu, W. H. Burkett, and M. Xiao, “Electromagnetically induced transparency
    with variable coupling-laser linewidth,” Phys. Rev. A, vol. 56, pp. 976–979, 1997.
    83. Y. Zhu, and T. N. Wasserlauf, “Sub-Doppler linewidth with electromagnetically
    induced transparency in rubidium atoms,” Phys. Rev. A, vol. 54, pp. 3653–3656,
    1996.
    84. A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Influence of atomic motion
    on the shape of two-photon resonance in gas,” JETP Lett., vol. 72, no. 3, pp. 119–
    122, 2000.
    85. A. Karawajczyk, and J. Zakrzewski, “Lasers without inversion in a Dopplerbroadened
    medium,” Phys. Rev. A, vol. 51, pp. 830–834, 1995.
    86. D. Z. Wang, and J. Y. Gao, “Effect of Doppler broadening on optical gain without
    inversion in a four-level model,” Phys. Rev. A, vol. 52, pp. 3201–3208, 1995.
    87. H. Lee, Y. Rostovtsev, C. J. Bednar, and A. Javan, “From laser-induced line
    narrowing to electromagnetically induced transparency: closed system analysis,”
    Appl. Phys. B, vol. 76, pp. 33–39, 2003.
    88. M. Born, and E. Wolf, Principles of Optics 7th ed., Cambridge University Press, pp.
    401–424, ISBN: 0080264824, 1999.
    89. N. H. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through
    one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E, vol. 65,
    pp. 046607-1~046607-8, 2002.
    90. J. Q. Shen, and R. X. Zeng, “Quantum-coherence-assisted tunable On- and Offresonance
    tunneling through a quantum-dot-molecule dielectric film,” J. Phys. Soc.
    Jpn., vol. 86, pp. 024401-1~024401-9, 2017.
    91. D. Jafari, M. Sahrai, H. Motavali, and M. Mahmoudi, “Phase control of group
    velocity in a dielectric slab doped with three-level ladder-type atoms,” Phys. Rev.
    A, vol. 84, pp. 068311-1~068311-7, 2011.
    92. R. Zeng, J. Gu, and J. Q. Shen, “Controllable tunneling of light through a quantumdot-
    molecule dielectric film via electromagnetically induced transparency,” Opt.
    Photonics J., vol. 7, pp. 49–67, 2017.
    93. L. J. Radziemski, R. J. Engleman, and J. W. Brault, “Fourier-transformspectroscopy
    measurements in the spectra of neutral lithium, 6I and 7I (Li I) ,” Phys.
    Rev. A, vol. 52, pp. 4462–4470, 1995.
    94. W. C. Martin, and R. Zalubas, “Energy levels of sodium, NO I through Na XI,” J.
    Phys. Chem. Ref. Data, vol. 10, pp. 153–194, 1981.
    95. A. Kasapi, “Enhanced isotope discrimination using electromagnetically induced
    transparency,” Phys. Rev. Lett., vol. 77, pp. 1035–1038, 1996.
    96. K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically
    induced transparency,” Phys. Rev. Lett., vol. 66, pp. 2593–2596, 1991.
    97. Z. C. Wang, Thermodynamics and Statistical Physics 3rd ed., Higher Education
    Press: Beijing, China, ISBN: 9787040226362, 2003.
    98. E. Talebian, and M. Talebian, “A general review on the derivation of Clausius–
    Mossotti relation,” SciVerse ScienceDirect. Optik., vol. 124, pp. 2324–2326, 2013.
    99. ASTM D3276-86; Standard Guide for Painting Inspectors (Metal Substrate). ASTM
    International: West Conshohoken, PA, USA, p. 174. 2021.
    100. A. Abbas, and S. J. Huang, “Investigating the synergic effects of WS2 and ECAP
    on degradation behavior of AZ91 magnesium alloy,” Coatings, vol. 12, Iss. 11, pp.
    1710-1~1710-14, 2022.

    QR CODE