簡易檢索 / 詳目顯示

研究生: 吳泳翰
Yung-Han Wu
論文名稱: 利用Langmuir-Blodgett法製備之奈米金顆粒與奈米金棒薄膜應用於表面增強紅外吸收光譜之研究
Preparation of gold nanoparticle films by using Langmuir-Blodgett technique and their application for Surface Enhanced Infra-Red Absorption Spectroscopy
指導教授: 今榮東洋子
Toyoko Imae
朱瑾
Jinn P. Chu
口試委員: 何符漢
Fu-Han Ho
氏原真樹
Masaki Ujihara
郭東昊
Dong-Hau Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 75
中文關鍵詞: 奈米金顆粒奈米金棒Langmuir-Blodgett薄膜表面增強紅外吸收光譜
外文關鍵詞: gold nanoparticle, gold nanorod, Langmuir-Blodgett film, Surface Enhanced Infra-Red Absorption Spectrosco
相關次數: 點閱:218下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有緊密排列結構之奈米金屬顆粒薄膜,在光學、電子元件、生醫材料及感測器領域上皆有很大之應用性,而此類薄膜的製作方法也非常多元,諸如氣相沉積、蝕刻法、濕式化學法等。在本研究中,我們選擇使用Langmuir-Blodgett(LB)沉積技術完成薄膜之製備,而使用此方法具有製程簡單、耗時短、操作變因少以及可不受奈米金顆粒之形狀大小所限等優勢,並嘗試將此薄膜應用於表面增強紅外吸收(Surface Enhanced Infra-Red Absorption, SEIRA)技術中。
    本研究採用之薄膜製作過程可分為顆粒之製備、表面之改質及薄膜之形成等步驟。利用鹽類還原法及種晶促進成長法分別製備奈米金顆粒以及奈米金棒之水溶液,以烷基硫醇對進行表面修飾,使其具有疏水性。利用LB沉積裝置製備奈米金顆粒及奈米金棒之單層薄膜,並在不同之表面壓力條件下進行測試。在SEIRA試驗當中選擇兩種分子作為標的物,即Eicosanoic Aicd與PAMAM Dendrimer G4.5。
    由實驗結果中,我們觀察到奈米金顆粒及奈米金棒薄膜與表面壓力間之關係,隨著壓力增大,薄膜的均勻性、覆蓋率,顆粒的密度及規則性皆會增高。薄膜的結構變化則與SEIRA結果有著密切之關聯,由SEIRA試驗中可發現,具有較高覆蓋率及顆粒密度之薄膜,其Enhancing Factor也較高,可達到接近50之程度。


    The metal nanoparticle film with well arrangement has good applicability in many fields, such like photonics, electronics, biomaterials and sensors. Among all methods for the film preparation, such like vapor deposition, etching and wet chemical method, we use Langmuir-Blodgett technique to prepare the gold nanoparticle film in this research. This method has obvious advantages such like simple process, less time cost, and controllable operating parameters. It can be applied to various nanoparticles with any shape and size, such as spherical, rod, square or triangle type. After the film preparation, we tend to demonstrate the surface enhanced infra-red absorption (SEIRA) technique by using our own films.

    The film preparation process used in this study can be separated into three steps, including nanoparticle synthesis, surface modification and film forming. In the particle preparation, we use metal salt reduction method to prepare gold nanoparticle colloidal solution, and then apply seed-mediated growth method to synthesis gold nanorod solution. During the surface modification process, we use n-dodecyl mercaptan to modify the surfaces of gold nanoparticles and gold nanorods to make them hydrophobic. In the film forming part, we use LB deposition system to prepare gold nanoparticle and gold nanorod films with different surface pressures. From the experiment results, we find the relationship between gold nanoparticle and gold nanorod films to surface pressure. With surface pressure increase, the coverage and the uniformity get large; also the particle density and arrangement get increased.

    In SEIRA experiment, we chose Eicosanoic Acid and PAMAM Dendrimer G4.5 as the target molecule to check the SEIRA phenomenon of gold nanoparticle and gold nanorod films. The structures of the films have great relevance to SEIRA effect. The experiment results show that the gold nanoparticle and gold nanorod film with higher coverage and particle density have larger enhancing factors, close to 50-fold.

    第一章 緒論.........................................1 1.1 前言............................................1 1.2 金屬奈米粒子特性................................2 1.2.1 量子尺寸效應..................................2 1.2.2 表面效應......................................2 1.2.3 表面電漿共振..................................3 1.3 奈米金顆粒薄膜製備..............................4 1.3.1 奈米金顆粒製備法..............................4 1.3.1 二維粒子組裝法................................9 1.3.2 Langmuir –Blodgett法........................11 1.4 表面增強光譜技術...............................13 1.4.1 表面增強拉曼散射(SERS).......................13 1.4.2 表面增強紅外吸收(SEIRA.......................14 1.4.3 兩者之比較...................................17 1.5 研究動機及的...................................19 第二章 實驗與方法..................................20 2.1 實驗藥品.......................................20 2.2 實驗裝置及原理.................................21 2.2.1 Langmuir –Blodgett沉積裝置..................21 2.2.2 穿透式電子顯微鏡.............................22 2.2.3 原子力顯微鏡.................................23 2.2.4 紫外光/可見光光譜儀..........................24 2.2.5 傅立葉轉換紅外線光譜儀.......................26 2.3 實驗方法.......................................27 2.3.1 實驗架構.....................................27 2.3.2 實驗流程.....................................28 2.3.2.1 奈米金顆粒及奈米金棒製備法.................28 2.3.2.2 奈米金顆粒及奈米金棒改質法.................29 2.3.2.3 奈米金顆粒及奈米金棒LB膜製備法.............30 2.3.2.4 以Eicoanoic為標的物之SEIRA實驗.............32 2.3.2.5以PAMAM Dendrimer G4.5 為標的物之SEIRA實驗..32 第三章 結果與討論..................................34 3.1 奈米金顆粒及奈米金棒特性分析...................34 3.1.1 大小及尺寸分佈...............................34 3.1.2 光學性質.....................................36 3.2 奈米金顆粒LB膜特性分析.........................38 3.2.1 均勻性.......................................38 3.2.2奈米金顆粒密度................................44 3.2.3 光學性質.....................................46 3.3 奈米金棒LB膜特性分析...........................48 3.3.1 均勻性.......................................48 3.3.2 奈米金棒密度.................................50 3.3.3 光學性質.....................................51 3.3以Eicoanoic Acid為標的物之SEIRA實驗.............53 3.4以PAMAM Dendrimer G4.5 為標的物之SEIRA實驗......59 第四章 結論........................................65 4.1 結論...........................................65 4.2 建議...........................................69 參考文獻...........................................70

    [1] 吳民耀,劉威志, “表面電漿子理論與模擬,”
    第 486-496 頁, 物理雙月刊(廿八卷二期)2006 年4 月

    [2] 國立清華大學,生物物理實驗室,“表面電漿共振生物感測器”
    http://mx.nthu.edu.tw/~cmwu/LAMB.htm

    [3] 郭清癸, 黃俊傑, 牟中原“金屬奈米粒子的製造”
    第 614-624 頁,物理雙月刊(廿三卷六期)2001 年12 月

    [4] Mafune, F.; Kohno, J.-Y.; Takeda, Y.; Kondow, T.; Sawabe. H, “Structure and Stability of Silver Nanoparticles in Aqueous Solution Produced by Laser Ablation,”
    J. Phys. Chem. B 2000, 104, 8333-8337.

    [5] Mafune, F.; Kohno, J.-Y.; Takeda, Y.; Kondow, T.; Sawabe. H, “Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution,”
    J. Phys. Chem. B 2000, 104, 9111-9117.

    [6] Mafune, F.; Kohno, J.-Y.; Takeda, Y.; Kondow, T.; Sawabe. H, “ Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant,” J. Phys. Chem. B

    [7] Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P,
    “ Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt,” Science 2001, 291, 2115-2117.

    [8] Guo, L.; Huang, Q.; Li, X.-Y.; Yan, S,
    “Iron Nanoparticles: Synthesis and Applications in Surface Enhanced Raman Scattering and Electrocatalysis, ”
    Phys. Chem. Chem. Phys., 2001, 3, 1661-1665.

    [9] Reetz, M. T.; Helbig, W,
    “Size-Selective Synthesis of Nanostructured Transition Metal Clusters,” J. Am. Chem. Soc. 1994, 116, 7401-7402.

    [10] Mizukoshi, Y.; Okitsu, K.; Maeda, Y.; Yamamoto, T. A.; Oshima,
    R.; Nagata, Y,
    “ Sonochemical Preparation of Bimetallic Nanoparticles of
    Gold/Palladium in Aqueous Solution,”
    J. Phys. Chem. B 1997, 101, 7033-7037.

    [11] Okitsu, K.; Bandow, H.; Maeda, Y,
    “Sonochemical Preparation of Ultrafine Palladium Particles,”
    Chem. Mater. 1996, 8, 315-317.

    [12] Okitsu, K.; Mizukoshi, Y.; Bandow, H.; Yamamoto, T. A.; Nagata,
    Y.; Maeda, Y,
    “Synthesis of Palladium Nanoparticles with Interstitial Carbon by
    Sonochemical Reduction of Tetrachloropalladate(II) in Aqueous
    Solution,” J. Phys. Chem. B 1997, 101, 5470-5472.

    [13] Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K,
    “Dendrimer-Encapsulated Metal Nanoparticles: Synthesis,
    Characterization, and Application to Catalysis, ”
    Acc. Chem. Res. 2001, 34, 181-190.

    [14] 羅幼旭,
    “Langmuir-Blodgett薄膜之製備與鑑定 ”
    www.nanoedu.ndhu.edu.tw

    [15] Armstrong, A. J.; Mockler, R. C.; and O’Sullivan, W.J.,
    “Isothermal-expansion melting of two-dimensional colloidal
    monolayers on the surface of water,”
    J. Phys. Condens. Matter 1, 1707, 1989

    [16] Robinson, D. J and Earnshaw, J. C.,
    “Initiation of aggregation incolloidal particle monolayers,”
    Langmuir 9, 1436, 1993

    [17] Martinez-Lopez, F.; Cabrerizo-Vilchez, M. A.; Hidalgo-Alvarez,
    R., “Colloidal interaction at the air–liquid interface,”
    J. Colloid Interfaces Sci. 232, 303, 2000

    [18] Sun, J., and Stirner, T.,
    “Molecular dynamics simulation of the surfacepressure of colloidal
    monolayers,” Langmuir 17, 3103, 2001

    [19] Ghezzi, F.; Earnshaw, J. C.; Finnis, M.; McCluney, M.,
    “Patternformation in colloidal monolayers at the air–water
    interface,” J. Colloid Interface Sci. 238, 433, 2001

    [20] Hurd, A. J and Schaeffer, D. W.,
    “Diffusion-limited aggregation in twodimensions,”
    Phys. Rev. Lett. 54, 1043, 1985

    [21] Onoda, G. Y.,
    “Direct observation of two-dimensional, dynamicclustering and
    ordering with colloids,” Phys. Rev. Lett. 55, 226, 1985

    [22] Robinson, D. J and Earnshaw, J. C.,
    “Experimental study of colloidalaggregation in two dimensions. I.
    Structural aspects,” Phys. Rev. A. 46, 2045, 1992

    [23] Robinson, D. J and Earnshaw, J. C.,
    “Experimental study of colloidalaggregation in two dimensions. II.
    Kinetic aspects,” Phys. Rev. A. 46, 2055, 1992

    [24] Robinson, D. J and Earnshaw, J. C.,
    “Experimental study of colloidalaggregation in two dimensions. III.
    Structural dynamics,” Phys. Rev. A. 46, 2065, 1992

    [25] Tolnai, Gy.; Csempesz, F.; Kabai-Faix, M.; Kalman, E.; Keresztes,
    Zs.;Kovacs, A. L.; Ramsden, J. J.; and Horvolgyi, Z.,
    “Preparation and characterization of surface-modified
    silica-nanoparticles," Langmuir 17, 2683, 2001

    [26] Cao, L. Wan, H.; Huo, L.; Xi, J.,
    “A novel method for preparingordered sno2/tio2 alternate
    nanoparticulate films,” J. Colloid Interfaces Sci. 244, 97, 2001

    [27] Collier, C. P.; Saykally, R. J.; Shiang, J. J.; Henrich, S. E.;Heath, J.
    R.,“Reversible tuning of silver quantum dot monolayers through
    the metal-insulator transition,” Science 277, 1978, 1997

    [28] Kurth, D. G.; Lehmann, P.; Lesser, C.,
    “Engineering the surfacechemical properties of semiconductor
    nanoparticles: surfactant-encapsulated CdTe-clusters,”
    Chem. Commun. P.949-950

    [29] Masatoshi Osawa,
    “Dynamic Processes in Electrochemical Reactions Studied by
    Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS)”
    Bull. Chem. Soc. Jpn., 70, No.12 (1997)

    [30] Fei Le.; Daniel W. Brandl.; Yaroslav A. Urzhumov.; Hui Wang.;
    Janardan Kundu.; Naomi J. Halas.; Javier Aizpurua.; Peter
    Nordlander,
    “Metallic Nanoparticle Arrays: A Common Substrate for Both
    Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared
    Absorption,” VOL. 2, NO. 4, 707–718, 2008

    [31] Dominik Enders.; Swen Rupp ; Alexander Kuller ; Annemarie
    Pucci ,
    “Surface enhanced infrared absorption on Au nanoparticle films
    deposited on SiO2/Si for optical biosensing: Detection of the
    antibody–antigen reaction,”
    Surface Science 600 (2006) L305–L308

    [32] D. Enders and A. Pucci,
    “Surface enhanced infrared absorption of octadecanethiol on
    wetchemically prepared Au nanoparticle films,”
    Applied Physics Letters, 88, 184104 2006

    [33] Janardan Kundu.; Fei Le.; Peter Nordlander.; Naomi J. Halas,
    “Surface enhanced infrared absorption (SEIRA) spectroscopy
    onnanoshell aggregate substrates,”
    Chemical Physics Letters 452 (2008) 115–119

    [34] Na Liu.; Thomas Weiss.; Martin Mesch.; Lutz Langguth.; Ulrike
    Eigenthaler.; Michael Hirscher.; Carsten Sonnichsen.; Harald
    Giessen,
    “Planar Metamaterial Analogue of Electromagnetically Induced
    Transparency for Plasmonic Sensing,”
    Nano Lett. 2010, 10, 1103–1107

    [35] Sheng-Juan Huo.; Qiao-Xia Li.; Yan-Gang Yan; Yi Chen.;
    Wen-Bin Cai.; Qun-Jie Xu.; Masatoshi Osawa.,
    “Tunable Surface-Enhanced Infrared Absorption on Au Nanofilms on
    Si Fabricated by Self-Assembly and Growth of Colloidal Particles,”
    J. Phys. Chem. B 2005, 109, 15985-15991

    [36] 清華大學, 羅聖全,
    “研發奈米科技的基本工具之一電子顯微鏡介紹– TEM,”
    www.materialsnet.com.tw

    [37] 翁裕翔, 張淑菁,
    “不同銦含量之氮化銦鎵薄膜材料特性研究”
    東南科技大學, 電子工程系, 畢業實務專題, 中華民國99年

    [38] R.M. Silverstein, G.C. Bassler, T.C. Morrill,
    “Spectrometric Identification of Organic Compounds,”
    John Wiley & Sons Inc 5th(1991)

    [39] Osmania University,
    “FTIR Instrument ,”
    http://14.139.82.43/cfrd/ftir.html

    QR CODE