簡易檢索 / 詳目顯示

研究生: 張凱棋
Kai-Chi Chang
論文名稱: 低功耗及超高解析度之電容校正逐次漸進式類比數位轉換器設計
Design of Low-Power and Ultra-High-Resolution Capacitor Calibration Successive Approximation Analog-to-Digital Converters
指導教授: 鍾勇輝
Yung-Hui Chung
口試委員: 陳筱青
陳信良
姚嘉瑜
鍾勇輝
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 185
中文關鍵詞: 類比數位轉換器低功耗超高解析度電容校正逐次漸進式類比數位轉換器電容交換技術殘值超取樣技術
外文關鍵詞: ADC, Low-Power, Ultra-High-Resolution, Capacitor Calibration, Successive Approximation Analog-to-Digital Converters, Capacitor Swapping Technique, Residue Oversampling Technique
相關次數: 點閱:456下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出兩個逐次漸進式類比數位轉換器,分別是十八位元每秒五十萬次取樣的逐次漸進式類比數位轉換器使用電容校正技術和二十位元每秒十萬次取樣的逐次漸進式類比數位轉換器使用電容校正技術與殘值超取樣技術。
    對於實現高解析度類比數位轉換器而言,面積、功耗、線性度與雜訊的設計具有挑戰。本論文提出的兩個類比數位轉換器皆使用電容橋接陣列的方式降低取樣輸入電容,並使用數位電容校正技術及電容交換技術降低由電容不匹配產生的誤差進而提升線性度。而比較器的雜訊在高解析類比數位轉換器中扮演舉足輕重的角色,往往直接影響類比數位轉換器的解析度,使用靜態前置放大器來抑制比較器所貢獻的雜訊,在二十位元類比數位轉換器中,使用殘值超取樣技術將雜訊進行平均進一步降低雜訊的影響。
    本論文提出的十八位元類比數位轉換器在5伏特、 3.3伏特及1.8伏特的操作電壓下,功率消耗為2.486毫瓦。經過電容校正後,量測的訊號對雜訊與失真比是97.4 dB,無雜散動態範圍是111.27 dB,動態範圍103 dB,性能指標是180.4dB。
    本論文提出的二十位元類比數位轉換器在5伏特、 3.3伏特及1.8伏特的操作電壓下,功率消耗為2.175毫瓦。經過電容校正後,量測的訊號對雜訊與失真比是107.21 dB,無雜散動態範圍是121.75 dB,性能指標是183.9dB。


    This thesis proposed two successive approximation register (SAR) analog-to-digital converters (ADCs). One is an 18-bit SAR ADC with a sampling rate of 500 KS/s employing a capacitor calibration technique and the other is a 20-bit SAR ADC with a sampling rate of 100 KS/s utilizing a capacitor calibration technique along with a residue oversampling technique.
    Designing high-resolution ADCs poses challenges in terms of area, power consumption, linearity, and noise. Both ADCs proposed in this thesis utilize a bridge capacitor array to reduce sampling capacitance and employ a digital capacitor calibration technique. The capacitor swapping technique is applied to reduce errors caused by capacitor mismatch and thus enhance linearity. Comparator noise is crucial in high-resolution SAR ADCs, often directly affecting their resolution. To mitigate the noise contributed by comparators, static pre-amplifiers are used. In the 20-bit SAR ADC, the residue oversampling technique is employed to reduce the impact of comparator noise further.
    The proposed 18-bit SAR ADC consumes 2.486 mW. It occupies an active area of 0.78 mm2. After capacitor calibration, the measured differential nonlinearity (DNL) and integral nonlinearity (INL) are LSB and LSB, respectively. The measured signal-to-noise and distortion ratio (SNDR) is 97.4 dB, signal-to-noise ratio (SNR) is 97.52 dB, dynamic range (DR) is 103 dB, and spur-free dynamic range (SFDR) is 111.7 dB. the equivalent Scherer figure of merit (FOMS) is 180.4 dB.
    The proposed 20-bit SAR ADC consumes 2.175 mW. It occupies an active area of 1.1 mm2. After capacitor calibration, the measured SNDR, SNR, and SFDR are 107.21 dB, 107.61 dB, and 121.75 dB, respectively. The simulated FOMS is 183.9 dB.

    論 文 摘 要 I Abstract III Tables of Contents VI List of Tables X List of Figures XII Chapter 1 Introduction 1 Chapter 2 Review of ADCs 4 Chapter 3 Architectural Considerations 25 Chapter 4 Design of 18–bit SAR ADC Using Capacitor Calibration Technology 59 Chapter 5 Design of 20–bit SAR ADC Using Capacitor Calibration Technology 119 Chapter 6 Conclusion and Future Prospect 179 References 181

    [1] Chi-Hung Lin and K. Bult, “A 10-b, 500-MSample/s CMOS DAC in 0.6 mm/sup 2/,” in IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 1948-1958, Dec. 1998.
    [2] C. P. Hurrell, et al., “An 18b 12.5MS/s ADC With 93 dB SNR,” in IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2647-2554, Dec. 2010.
    [3] A. Bannon, et al., “An 18b 5MS/s SAR ADC with 100.2 dB Dynamic Range,” in VLSI Symposium on Circuits, pp. 1-2, June 2014.
    [4] M. Maddox, et al., “A 16-bit linear passive-charge-sharing SAR ADC in 55nm CMOS,” in Proc. of IEEE A-SSCC, pp. 153-156, Nov. 2016.
    [5] J. Shen, et al., “A 16-bit 16MS/s SAR ADC with On-Chip Calibration in 55nm CMOS,” in VLSI Symposium on Circuits, pp. 282-283, Jun, 2017.
    [6] D. Hummerston, et al., “An 18-bit 2MS/s Pipelined SAR ADC utilizing a sampling distortion cancellation circuit with -107dB THD at 100kHz,” in VLSI Symposium on Circuits, pp. 280-281, Jun, 2017.
    [7] R. Guan, et al., “16-bit 1-MS/s SAR ADC with foreground digital-domain calibration,” in IET Circuits, Devices & Systems, vol. 12, issue 4, pp. 505-513, 2018.
    [8] C. C. Lee, et al., “A 12b 70MS/s SAR ADC with Digital Startup Calibration in 14nm CMOS,” in VLSI Symposium on Circuits, pp. 62-63, Jun, 2015.
    [9] Y.-S. Shu, et al., “An oversampling SAR ADC with DAC mismatch error shaping achieving 105dB SFDR and 101dB SNDR over 1kHz BW in 55nm CMOS,” in IEEE International Solid-State Circuit Conference, Feb. 2016.
    [10] C.-C. Liu, et al., “A 12 bit 100 MS/s SAR-Assisted Digital-Slope ADC,” in IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2941-2950, Dec. 2016.
    [11] J. Liu et al., “A 13-bit 0.005-mm2 40-MS/s SAR ADC With kT/C Noise Cancellation,” in IEEE Journal of Solid-State Circuits, vol. 55, no. 12, pp. 3260-3270, Dec. 2020.
    [12] T. Miki et al., “A 4.2 mW 50 MS/s 13 bit CMOS SAR ADC With SNR and SFDR Enhancement Techniques,” in IEEE Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1372-1381, Jun. 2015.
    [13] J. Fredenburg, et al., “A 90MS/s 11MHz Bandwidth 62dB SNDR Noise-Shaping SAR ADC,” in IEEE International Solid-State Circuit Conference, Feb. 2012. pp. 468-469.
    [14] C.-C. Liu, et al., “A 0.46mW 5MHz-BW 79.7dB-SNDR Noise-Shaping SAR ADC with Dynamic-Amplifier-Based FIR-IIR Filter,” in IEEE International Solid-State Circuit Conference, Feb. 2017. pp. 466-467.
    [15] S. Li, et al., “A 13-ENOB 2nd-Order Noise-Shaping SAR ADC Realizing Optimized NTF Zeros Using an Error-Feedback Structure,” in IEEE International Solid-State Circuit Conference, Feb. 2018. pp. 234-235.
    [16] H. Li, et al., “Signal-Independent Background-Calibrating 20b 1MS/s SAR ADC with 0.3ppm INL,” in IEEE International Solid-State Circuit Conference, Feb. 2018, pp. 242-243.
    [17] Kuramochi Y.,Matsuzawa A. and Kawabata M., “A 0.05-mm2 110-μW 10-b self-calibrating successive approximation ADC core in 0.18-μm CMOS,” in IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 224 – 227, Jul. 2007.
    [18] Y.-H. Chung, et al., “A 102dB-SFDR 16bit Calibration-Free SAR ADC in 180-nm CMOS,” in IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Nov. 2019, pp. 5-8.
    [19] J. Steensgaard, R. Reay, R. Perry, D. Thomas, G. Tu, G. Reitsma, “A 24b 2MS/s SAR ADC with 0.03ppm INL and 106.3dB DR in 180nm CMOS,” in IEEE International Solid-State Circuit Conference, Feb. 2022, pp. 168–170.
    [20] Y. -H. Chung, Y. -S. Lin and Q. -F. Zeng, “A 12-bit 20-MS/s SAR ADC With Fast-Binary-Window DAC Switching in 180nm CMOS,” in IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Oct. 2018, pp. 34-37.
    [21] Kok Lim Chan and I. Galton, “A 14b 100MS/s DAC with Fully Segmented Dynamic Element Matching,” in IEEE International Solid-State Circuits Conference, Feb. 2006, pp. 2390-2399.
    [22] C.-H. Kuo and T. -H. Kuo, “Capacitor-Swapping Cyclic A/D Conversion Techniques With Reduced Mismatch Sensitivity,” in IEEE Transactions on Circuits and Systems II, vol. 55, no. 12, pp. 1219-1223, Dec. 2008.
    [23] M. -H. Wu, Y. -H. Chung and H. -S. Li, “A 12-bit 8.47-fJ/conversion-step 1-MS/s SAR ADC using capacitor-swapping technique,” in IEEE Asian Solid-State Circuits Conference (A-SSCC), Nov. 2012, pp. 157-160.
    [24] C. -W. Hsu, L. -J. Chang, C. -P. Huang and S. -J. Chang, “A 12-bit 40-MS/s calibration-free SAR ADC,” in IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, May. 2017, pp. 1-4.
    [25] H.-S. Lee, et al., "A Self-Calibrating 15 Bit CMOS A/D Converter," in IEEE Journal of Solid-State Circuits, vol. 19, no. 6, pp. 813–819, Dec. 1984.
    [26] W.-H. Tseng, et al., “A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for digitally-assisted wireless transmitters,” in IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2222-2231, Oct. 2016.
    [27] W. Liu, et al., “A 12-bit, 45 MS/s, 3 mW Redundant Successive-Approximation-Register Analog-to-Digital Converter with Digital Calibration,” in IEEE Journal of Solid-State Circuits, vol. 46, no. 11, pp. 2661–2672, Nov. 2011.
    [28] R. Xu, et al., "Digitally Calibrated 768-kS/s 10-b Minimum-Size SAR ADC Array With Dithering," in IEEE Journal of Solid-State Circuits, vol. 47, no. 9, pp. 2129–2140, Sep. 2012.
    [29] A. H. T. Chang, “Low-Power High-Performance SAR ADC With Redundancy and Digital Background Calibration,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA, 2013.
    [30] C.-C Liu, et al., “A 10b 100MS/s 1.13mW SAR ADC with binary scaled error compensation,” in IEEE International Solid-State Circuits Conference, pp.386–387, Feb. 2010.
    [31] H.-K Hong, et al., “A Decision-Error-Tolerant 45 nm CMOS 7b 1 GS/s Nonbinary 2b/Cycle SAR ADC,” in IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 543-555, Nov, 2015.
    [32] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched-opamp circuits,” in IEEE Electron. Letter, vol. 35, pp. 8-10, Jan. 1999.
    [33] M. Miyahara, et al., “A low-noise self-calibrating dynamic comparator for high-speed ADCs,” in IEEE Asian Solid-State Circuits Conference (A-SSCC), Nov. 2008, pp. 269–272.
    [34] B.-S. Song, et al., “A 1 V 6 b 50 MHz current-interpolating CMOS ADC,” in VLSI Symposium on Circuits, Jun. 1999, pp. 79-80.
    [35] S.-W. M. Chen and R. W. Brodersen, “A 6-bit 600 MS/s 5.3 mW asynchronous ADC in 0.13- μ m CMOS,” in IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, Dec. 2006.
    [36] T. Y. Man, et al., “Development of single-transistor-control LDO based on flipped voltage follower for SoC,” in IEEE Transactions on Circuits and Systems I, vol. 55, no. 5, pp. 1392–1401, Jun. 2008.
    [37] S. W. Huang, et al., “A 14-BIT LOW POWER 2-MS/S SAR ADC WITH RESIDUE OVERSAMPLING,” in International Journal of Electrical Engineering, vol. 27, pp. 105-114, Jun. 2020.

    無法下載圖示 全文公開日期 2034/05/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE