簡易檢索 / 詳目顯示

研究生: 王伯元
Po-Yuan Wang
論文名稱: 過渡金屬三元硫屬化合物 CdInS2 與 CdInSe2 之結構特性及時間解析光學映射研究
Structural properties and time resolved photoluminescence study of transition metal ternary chalcogenides CdInS2 and CdInSe2
指導教授: 何清華
Ching-Hwa Ho
周宏隆
Hung-Lung Chou
口試委員: 何清華
Ching-Hwa Ho
周宏隆
Hung-Lung Chou
李奎毅
Kuei-Yi Lee
劉昌樺
Chang-Hua Liu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 138
中文關鍵詞: 過渡金屬硫屬化合物二硫化銦鎘二硒化銦鎘穿透光譜光激發螢光光譜時間解析光激螢光拉曼散射光譜X射線晶格繞射穿透式電子顯微鏡
外文關鍵詞: Transition metal, Chalcogenide, CdInS2, CdInSe2, Transmittance experiment, Photoluminescence, Time-resolved photoluminescence, Raman scattering, X-ray diffraction analysis, Field emission gun transmission electron microscope
相關次數: 點閱:211下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文成長並探討過渡性金屬鎘銦化雙硫屬化合物之二硫化銦鎘 (CdInS2) 及二硒化銦鎘 (CdInSe2) 的光學特性與載子動力學之研究。首先利用化學氣相傳導法成長 CdInS2 與 CdInSe2 之單晶,並對此系列晶體進行詳細的晶體結構分析、光學及電性量測。
    藉由能量色散X射線光電子能譜確認成長材料之元素比例與預期成份相符,透過 X 射線晶格繞射及穿透式電子顯微鏡分析 CdInS2 及CdInSe2 之結構為六方晶系單晶結構,CdInS2 之晶格常數 a=3.55 Å、c=7.02 Å;CdInSe2 之晶格常數 a=4.00 Å、c=16.88 Å。穿透及光激發螢光實驗證明 CdInS2 與 CdInSe2 皆為直接能隙材料,於室溫下能隙為 2.47 eV 與 1.82 eV,隨著溫度降低,吸收與激發位置產生藍移現象;時間解析光激螢光光譜證實 CdInS2 與 CdInSe2 發光為自由激子所主導,為能帶邊緣復合機制,於室溫中時間常數 τ1 皆非常快速,為 0.21 ns 與 0.27 ns。由熱探針與霍爾量測實驗證實 CdInS2 與 CdInSe2 皆為 N 型半導體,藉由變溫電阻率的量測中,可發現材料呈現出半導體趨勢。
    本論文成功合成具有穩定光學特性,且能夠發出高強度的綠光與紅光並擁有高度結晶性之 CdInS2 與 CdInSe2 單晶材料,更加開拓了其於未來光學元件應用的前景。


    This work discusses the optical properties and carrier dynamics of transition metal cadmium indium disulfide (CdInS2) and cadmium indium diselenide (CdInSe2). Single crystals of CdInS2 and CdInSe2 were successfully grown by the chemical vapor transport method. The crystal structure, optical and electrical properties were carried out for both crystals. The energy dispersive X-ray spectroscopy verified that the stoichiometry of the crystals is close to the ideal value. The structural analysis was done with X-ray diffraction analysis and high resolution transmission electron microscopy. The results confirmed that CdInS2 and CdInSe2 were crystallized in hexagonal structure. The lattice constants are determined to be a=3.55 Å, c=7.02 Å for CdInS2 and a=4.00 Å, c=16.88 Å for CdInSe2, respectively. The transmission and photoluminescence experiments are done at the temperature range from 20 K to 300K. Both measurements show that CdInS2 and CdInSe2 are direct energy gap materials, with energy gaps located at 2.475 eV and 1.820 eV at room temperature. As the temperature decreases, the absorption and excitation positions show blue-shift behavior; the time-resolved photoluminescence measurement confirmed that the lifetime of CdInS2 and CdInSe2 is dominated by the free exciton, which is a band-edge recombination mechanism. The time constants τ1 are very fast at room temperature, which are 0.21 ns and 0.27 ns for CdInS2 and CdInSe2, respectively. The hot probe and Hall measurement experiments confirmed that CdInS2 and CdInSe2 are N-type semiconductors. Based on the results of CdInS2 and CdInSe2 single crystals, the future applications of the materials in the optoelectronic devices field are expected.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 XIII 第一章 緒論 1 第二章 晶體合成 3 2.1樣品原料準備 4 2.2 石英管清洗流程 5 2.3 真空密封 6 2.4 三區獨立程式控制高溫長晶爐 7 2.5 化學氣相傳導法 8 2.6 化合與成長 10 第三章 實驗原理與量測技術 11 3.1 元素比例及結構分析 12 3.1.1 掃描式電子顯微鏡 12 3.1.2 能量色散X射線光譜 13 3.1.3 X射線晶格繞射分析儀 14 3.1.4 場發射穿透式電子顯微鏡 16 3.1.5 X射線光電子能譜儀 18 3.1.6拉曼散射光譜 20 3.2 材料光學分析 23 3.2.1 穿透光譜 23 3.2.2 光激發螢光光譜 26 3.3.3 時間解析光激螢光 31 3.3 材料電學分析 34 3.3.1熱探針量測實驗 34 3.3.2雙接點電阻率量測與光響應之鑑定 36 3.3.3四接點電阻率量測 38 3.3.4霍爾效應 41 第四章 結果與討論 44 4.1 掃描式電子顯微鏡與能量色散X射線光譜 44 4.2 X射線晶格繞射分析 46 4.3穿透式電子顯微鏡與能量色散X射線光譜 50 4.4 X射線光電子能譜 56 4.5 拉曼散射光譜 64 4.6穿透光譜 68 4.7 光激發螢光光譜 76 4.8 時間解析光激螢光 92 4.9 熱探針量測實驗 103 4.10 雙接點電阻率量測與光響應之鑑定 105 4.11 四接點電阻率量測 108 4.12 霍爾效應 113 第五章 結論 115 參考文獻 117

    [1] G. Guseinov, M. Ismailov, and G. Guseinov, "On the new semiconducting compound CdTlS2," Materials Research Bulletin, vol. 2, no. 8, pp. 765-772, 1967.
    [2] R. M. Thombre, "Optical and structural properties of CdInS2 thin films deposited by spray pyrolysis method," Acta Ciencia Indica, vol. XL P, no. 2, p. 57, 2013.
    [3] X. Wang, Y. Gong, G. Shi, W. L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe, B. K. Tay, P. M. Ajayan, "Chemical vapor deposition growth of crystalline monolayer MoSe2," ACS Nano, vol. 8, no. 5, pp. 5125-5131, 2014.
    [4] R. Uecker, "The historical development of the Czochralski method," Journal of Crystal Growth, vol. 401, pp. 7-24, 2014.
    [5] R. Heinemann and P. Schmidt, "Crystal crowth by chemical vapor transport: process screening by complementary modeling and experiment," Crystal Growth & Design, vol. 20, no. 9, pp. 5986-6000, 2020.
    [6] C. Ho, C. Huang, and C. Wu, "Preparation and characterization of Ni-incorporated FeS2 single crystals," Journal of crystal growth, vol. 270, no. 3-4, pp. 535-541, 2004.
    [7] H. Schäfer, " Chemical transport reactions," Elsevier, UK, London, 2016.
    [8] L. Hildisch, "Nonstoichiometry of CdS crystals grown by different methods," Journal of Crystal Growth, vol. 3, pp. 131-134, 1968.
    [9] D. Koga, S. Kusumi, M. Shibata, and T. Watanabe, "Applications of scanning electron microscopy using secondary and backscattered electron signals in neural structure," Frontiers in Neuroanatomy, vol. 15, 2021.
    [10] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, "Scanning electron microscopy and X-ray microanalysis," Springer, USA, New York, 2017.
    [11] X. Zhu, R. Birringer, U. Herr, and H. Gleiter, "X-ray diffraction studies of the structure of nanometer-sized crystalline materials," Physical Review B, vol. 35, no. 17, p. 9085, 1987.
    [12] W. L. Bragg, "The diffraction of short electromagnetic waves by a crystal," Scientia, vol. 23, no. 45, pp. 153-162, 1929.

    [13] C. Kittel, P. McEuen, and P. McEuen, "Introduction to solid state physics," Wiley, USA, New York 2005.
    [14] D. B. Williams and C. B. Carter, "The transmission electron microscope," Springer, USA, New York, 2009.
    [15] G. Hota, S. Idage, and K. C. Khilar, "Characterization of nano-sized CdS–Ag2S core-shell nanoparticles using XPS technique," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 293, no. 1-3, pp. 5-12, 2007.
    [16] S. Hofmann, "Practical surface analysis: state of the art and recent developments in AES, XPS, ISS and SIMS," Surface and interface analysis, vol. 9, no. 1, pp. 3-20, 1986.
    [17] P. Graves and D. Gardiner, "Practical raman spectroscopy," Springer, UK, London, vol. 10, 1989.
    [18] G. S. Bumbrah and R. M. Sharma, "Raman spectroscopy–basic principle, instrumentation and selected applications for the characterization of drugs of abuse," Egyptian Journal of Forensic Sciences, vol. 6, no. 3, pp. 209-215, 2016.
    [19] J. I. Pankove, "Optical processes in semiconductors," Courier Corporation, USA, New York, 1975.
    [20] O. Yahaya, M. MatJafri, A. Aziz, and A. Omar, "Visible spectroscopy calibration transfer model in determining pH of Sala mangoes," Journal of Instrumentation, vol. 10, no. 05, p. T05002, 2015.
    [21] A. H. Kitai, "Solid state luminescence: Theory, materials and devices," Springer Science & Business Media, UK, London, 2012.
    [22] P. G. Goldberg, D. G. Thomas, "Luminescence of inorganic solids," Academic Press, USA, New York, 1966.
    [23] C. H. Ho and M. H. Lin, "Synthesis and optical characterization of a high-quality ZnS substrate for optoelectronics and UV solar-energy conversion," RSC advances, vol. 6, no. 84, pp. 81053-81059, 2016.
    [24] L. C. Muhimmah and C. H. Ho, "Dual phase two-color emission observed in van der waals GaTe planes," Applied Surface Science, vol. 542, p. 148593, 2021.
    [25] W. Becker, A. Bergmann, M. Hink, K. König, K. Benndorf, and C. Biskup, "Fluorescence lifetime imaging by time‐correlated single‐photon counting," Microscopy research and technique, vol. 63, no. 1, pp. 58-66, 2004.
    [26] A. Y. Kobitski, K. Zhuravlev, H. Wagner, and D. Zahn, "Self-trapped exciton recombination in silicon nanocrystals," Physical Review B, vol. 63, no. 11, p. 115423, 2001.
    [27] A. Axelevitch and G. Golan, "Hot-probe method for evaluation of majority charged carriers concentration in semiconductor thin films," Facta universitatis-series: Electronics and Energetics, vol. 26, no. 3, pp. 187-195, 2013.
    [28] J. P. Colinge and C. A. Colinge, "Physics of semiconductor devices," Springer Science & Business Media, UK, London, 2005.
    [29] L. J. van der Pauw, "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape," Philips Res. Rep, vol. 13, no. 1, pp. 1-9, 1958.
    [30] D. K. Schroder, "Semiconductor material and device characterization," John Wiley & Sons, USA, New Jersey, 2015.
    [31] G. Guseinov, G. Abdullayev, E. Kerimova, R. Gamidov, and G. Guseinov, "Structural and physical properties of three-component CdInS2 (Se2, Te2) compounds," Materials Research Bulletin, vol. 4, no. 11, pp. 807-816, 1969.
    [32] K. K. Tiong, C. Ho, and Y. Huang, "The electrical transport properties of ReS2 and ReSe2 layered crystals," Solid state communications, vol. 111, no. 11, pp. 635-640, 1999.
    [33] J. Chastain and R. C. King Jr, "Handbook of X-ray photoelectron spectroscopy," Perkin-Elmer Corporation, USA, Minnesota, vol. 40, p. 221, 1992.
    [34] W. Yang, N. Xu, and H. Zhang, "Nonlinear absorption properties of indium selenide and its application for demonstrating pulsed Er-doped fiber laser," Laser Physics Letters, vol. 15, no. 10, p. 105101, 2018.
    [35] A. Taghizadeh, U. Leffers, T. G. Pedersen, and K. S. Thygesen, "A library of ab initio Raman spectra for automated identification of 2D materials," Nature communications, vol. 11, no. 1, pp. 1-10, 2020.
    [36] Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," physica, vol. 34, no. 1, pp. 149-154, 1967.
    [37] W. S. Yoo, K. Kang, G. Murai, and M. Yoshimoto, "Temperature dependence of photoluminescence spectra from crystalline silicon," ECS Journal of Solid State Science and Technology, vol. 4, no. 12, p. P456, 2015.
    [38] G. Xing, J. Luo, H. Li, B. Wu, X. Liu, C. H. A. Huan, H. J. Fan, T. C. Sum, "Ultrafast exciton dynamics and two‐photon pumped lasing from ZnSe nanowires," Advanced Optical Materials, vol. 1, no. 4, pp. 319-326, 2013.
    [39] J. J. Fonseca, S. Tongay, M. Topsakal, A. R. Chew, A. J. Lin, C. Ko, A. V. Luce, A. Salleo, J. Wu, O. D. Dubon, "Bandgap restructuring of the layered semiconductor gallium telluride in air," Advanced Materials, vol. 28, no. 30, pp. 6465-6470, 2016.
    [40] A. S. Rosyadi, A. H. Y. Chan, J. X. Li, C. H. Liu, and C. H. Ho, "Formation of van der Waals Stacked p–n Homojunction Optoelectronic Device of Multilayered ReSe2 by Cr Doping," Advanced Optical Materials, p. 2200392, 2022.
    [41] N. Nagasundaram and A. H. Francis, "FTIR electronic spectra of Fe2P2S6 and Co2P2S2: Trigonal field splitting and lithium intercalation effects," Journal of Physics and Chemistry of Solids, vol. 50, no. 2, pp. 163-170, 1989.

    無法下載圖示 全文公開日期 2027/09/01 (校內網路)
    全文公開日期 2027/09/01 (校外網路)
    全文公開日期 2027/09/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE