簡易檢索 / 詳目顯示

研究生: 林佳宏
Jia-Hong Lin
論文名稱: 磁控濺鍍法製備氧化銦/氧化銅/氧化鋅之光電陰極與釩酸鉍之光電陽極應用於光電催化水分解之研究
Indium Oxide/Copper Oxide/ Zinc Oxide Photocathode and Bismuth Vanadium Oxide Photoanode Prepared by Magnetron Sputtering for Photoelectric Catalytic Water Splitting
指導教授: 郭東昊
Dong-Hau Kuo
王賈荃
Hairus Abdullah
口試委員: 薛人愷
Ren-Kae Shiue
柯文政
Wen-Cheng Ke
郭東昊
Dong-Hau Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 122
中文關鍵詞: 濺鍍退火薄膜電極氧化銅氧化鋅氧化銦釩酸鉍光陰極電催化性能光陽極
外文關鍵詞: sputtering, annealing, thin film electrode, copper oxide, zinc oxide, indium oxide, bismuth vanadate, photocatalytic performance, photoanode, photocathode
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用RF磁控濺鍍法在低沉積溫度下製備光電陰極及光電陽極之薄膜。
在光電陰極的部分本研究利用矽基板為基材,對其以磁控濺鍍法進行 In2O3 薄膜披覆,其主要目的是希望在酸性電解液中有優異的析氫能力,最主要是能讓矽基板在工作時不易形成二氧化矽,以避免能隙的改變降低對可見光的吸收。接著為了使電子-電洞能夠更有效的做分離,提高水分解的效能,以 RF 磁控濺鍍法分別製備 CuO 及 ZnO 薄膜做為第二層及第三層披覆,使電子與電洞能夠更有效的進行氧化還原反應。則在光電陽極的部分,本研究同樣利用磁控濺鍍法製備 BiVO4 薄膜,並以退火處理使其表面能更加的平整,並提高其光電流密度。實驗中,使用雙頻道恆電位/電流/交流阻抗儀來量測其光電催化性能,並且透過 SEM、EDS、XRD、XPS、UV、TEM 來分析其薄膜的表面特徵。
實驗則採用商購的靶材,以濺鍍功率 60 瓦、固定 50 sccm 氮氣流速、沉積時間 5000 秒及沉積溫度為室溫,製備出第一層之 Si/In2O3 薄膜;接著在濺鍍功率 60瓦、50 sccm 氬氣流速及沉積溫度為室溫條件下,分別以沉積時間為 5000 秒及 2500秒製備 CuO 和 ZnO 薄膜,使其能夠進行披覆,得到 Si/In2O3/CuO/ZnO 薄膜做為光電陰極。由 XRD 的結果得知,其 In2O3/CuO/ZnO 薄膜有正確形成。TEM 結果則可以很清楚的看到三層薄膜 In2O3/CuO/ZnO 均勻的披覆於基板上。XPS 的結果則顯示出了在薄膜中有氧缺陷的形成,其由 PL 能更進一步的證實因氧缺陷的形成,使薄膜更偏向可見光的吸收,且隨著薄膜的層數披覆增加,其電子-電洞的分離率也有增加的趨勢。DRS、UPS 與 LEIPS 的結果表示了其薄膜能帶的排列有利於電子-電洞的傳遞。電化學的量測結果得知 Si/In2O3/CuO/ZnO 擁有最佳的性能,LSV量測得知,在 0 VRHE 時,其光電流密度為-116.1 mA/cm2,EIS 阻抗量測中也表現了低阻抗 551.2 ohm,在模擬太陽光照射下之三小時 CstV 測試下,也表現出了良好的穩定性。光電陽極的部分,則製作出 Ni/BiVO4薄膜。在 XRD 量測得知 Ni/BiVO4 主要繞射峰屬於 Monoclinic 結構,其為(121)平面之繞射,則 XRD 與 Raman 分析結果都顯示出在 450°C 退火處理之 Ni/BiVO4 薄膜表現出了最高的結晶度, XPS的結果觀察到 BiVO4 經由水分解穩定性測試後,氧缺陷組成比例的上升,代表其對析氧反應的貢獻。經由 PL 的結果得知,經由退火後的 Ni/BiVO4 薄膜,其能隙產生改變,使其能夠更有效的吸收可見光波長。在電化學測試的結果得知,以濺鍍功率 60 瓦、50 sccm 固定氬氣流速、沉積時間 7500 秒及沉積溫度為室溫製備之Ni/BiVO4 薄膜有最佳的電化學特性,其在 1.23 VRHE 時,有最佳的光電流密度 23.1 mA/cm2,且在模擬太陽光照射下之三小時 CstV 量測,表現了良好的穩定性。


This study employed RF magnetron sputtering to fabricate thin films of
photoelectric cathodes and photoelectric anodes at low deposition temperatures. For the
photoelectric cathodes, silicon substrates were used as the base material, and In2O3 thin films were coated using RF magnetron sputtering. The main objective was to achieve
excellent hydrogen evolution capability in acidic electrolytes, primarily by preventing
the formation of silicon dioxide on the silicon substrate during operation to avoid
changes in bandgap and reduce absorption of visible light. To enhance the effective
separation of electrons and holes and improve the efficiency of water splitting, CuO and ZnO thin films were prepared as the second and third layers, respectively, using RF
magnetron sputtering to facilitate oxidation-reduction reactions. Similarly, for the
photoelectric anodes, BiVO4 thin films were fabricated using RF magnetron sputtering
and subjected to annealing to achieve a smoother surface and increased photoinduced
current density. The photoelectrocatalytic performance was measured using EC-lab, and
the surface characteristics of the thin films were analyzed using SEM, EDS, XRD, XPS,
UV, and TEM. Commercially available targets were used in the experiments, with a
sputtering power of 60 watts, a fixed nitrogen gas flow rate of 50 sccm, a deposition
time of 5000 seconds, and a deposition temperature at room temperature to fabricate the
first layer of Si/In2O3 thin films. Subsequently, CuO and ZnO thin films were prepared
under the conditions of a sputtering power of 60 watts, an argon gas flow rate of 50
sccm, and a deposition temperature at room temperature, with deposition times of 5000
seconds and 2500 seconds, respectively, to facilitate the coating process. This resulted in the Si/In2O3/CuO/ZnO thin film as the photoelectric cathode. XRD results confirmed the correct formation of the In2O3/CuO/ZnO thin film structure. TEM observations clearly showed the uniform coating of the three-layer thin film In2O3/CuO/ZnO on the substrate. XPS results indicated the formation of oxygen defects in the thin film, which was further confirmed by photoluminescence analysis, suggesting increased absorption of visible light due to the presence of oxygen defects and an increasing trend in the electron-hole separation rate with the number of coated layers. DRS and UPS results indicated favorable energy band alignment for electron-hole transfer. Electrochemical measurements revealed that Si/In2O3/CuO/ZnO exhibited the best performance, with a photocurrent density of -116.1 mA/cm2 at 0 VRHE, low impedance of 551.2 ohms in EIS impedance measurements, and demonstrated good stability in a three-hour CstV test under simulated sunlight. For the photoelectric anodes, Ni/BiVO4 thin films were utilized. XRD measurements indicated that the main diffraction peak of Ni/BiVO4 corresponded to the monoclinic structure, specifically the (121) plane. Both XRD and Raman analysis results revealed that the Ni/BiVO4 thin film subjected to annealing at 450°C exhibited the highest crystallinity. XPS results observed an increase in the proportion of oxygen defect elements in BiVO4 after stability test, indicating their contribution to oxygen evolution reaction. Moreover, PL results demonstrated that the annealed Ni/BiVO4 thin film exhibited a modified bandgap, enabling more effective absorption of visible light. In the electrochemical results, it was found that the Ni/BiVO4 thin film prepared with a sputtering power of 60 watts, a fixed argon gas flow rate of 50 sccm, a deposition time of 7500 seconds, and a deposition temperature at room temperature exhibited the best electrochemical characteristics. At 1.23 VRHE, it achieved the optimal photocurrent density of 23.1 mA/cm2. Moreover, it demonstrated excellent stability in a three-hour CstV measurement under simulated sunlight.

摘要 I ABSTRACT III 誌謝 V 圖目錄 X 表目錄 XV 第1章 第一章、緒論 1 1.1 前言 1 1.2 研究動機與目的 4 第2章 第二章、文獻回顧 7 2.1 水分解的光電化學原理 7 2.1.1 析氫反應(HER)其反應機制 8 2.1.2 析氧反應(OER)反應機制 9 2.2 光電陰極應用於析氫反應 10 2.2.1 氧化銅(CuO) 13 2.2.2 矽(Si) 15 2.2.3 氧化鋅(ZnO) 16 2.2.4 釩酸鉍(BiVO4) 17 第3章 第三章、實驗方法與步驟 19 3.1 實驗材料與規格 19 3.2 實驗設備 20 3.2.1 分析電子天平 20 3.2.2 超音波震盪機 20 3.2.3 烘箱 21 3.2.4 SIGMA 240V-300W氙燈 21 3.3 實驗步驟 22 3.3.1 基板前處理 22 3.3.2 薄膜濺鍍 23 3.4 分析儀器介紹及測量參數 26 3.4.1 高解析度場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy, FESEM) 26 3.4.2 雙頻恆電位/電流/交流阻抗儀 27 3.4.3 高功率X光繞射儀(X-Ray Diffractometer, XRD) 30 3.4.4 X射線光電子能階儀(X-ray Photoelectron Spectroscopy, XPS) 32 3.4.5 場發射穿透式電子顯微鏡(Field Emission Gun Transmission Electron Microscopy, FEG-TEM) 34 3.4.6 紫外光-可見光/近紅外光分析儀(UV-Vis-NIR Spectrophotometry) 35 3.4.7 光致發螢光光譜儀(Spectrofluormeter, PL) 36 第4章 第四章、結果與討論 38 4.1 以RF磁控濺鍍第二層來實現Si/In2O3的表面處理 42 4.1.1 不同濺鍍功率對Si/In2O3/CuO電化學表現之影響 42 4.1.2 不同沉積時間對Si/In2O3/CuO電化學表現之影響 44 4.2 以RF磁控濺鍍第三層實現Si/In2O3/CuO的表面處理 46 4.2.1 不同金屬薄膜選的選用 46 4.2.2 不同沉積時間對Si/In2O3/CuO/ZnO電化學表現之影響 48 4.2.3 Si/In2O3/CuO/ZnO薄膜之CstV量測 50 4.3 以矽基板分別披覆不同層數之In2O3、CuO與ZnO薄膜其特性探討 51 4.3.1 Si、Si/In2O3薄膜、Si/In2O3/CuO薄膜與Si/In2O3/CuO/ZnO之EIS分析 51 4.3.2 Si、Si/In2O3薄膜、Si/In2O3/CuO薄膜與Si/In2O3/CuO/ZnO薄膜之PL分析 53 4.3.3 Si、Si/In2O3薄膜、Si/In2O3/CuO薄膜與Si/In2O3/CuO/ZnO薄膜之TPC分析 54 4.3.4 Si、Si/In2O3薄膜、Si/In2O3/CuO薄膜與Si/In2O3/CuO/ZnO薄膜之SEM分析 56 4.3.5 Si、Si/In2O3薄膜、Si/In2O3/CuO薄膜與Si/In2O3/CuO/ZnO薄膜之LSV及ABPE分析 57 4.4 Si/In2O3/CuO/ZnO薄膜之表面結構與成分分析 59 4.4.1 Si/In2O3/CuO/ZnO薄膜之XRD分析 59 4.4.2 Si/In2O3/CuO/ZnO薄膜之XPS分析 61 4.4.3 Si/In2O3/CuO/ZnO 薄膜之TEM分析 64 4.4.4 Si/In2O3/CuO/ZnO 薄膜之UPS、LEIPS及DRS分析 66 4.5 以RF磁控濺鍍BiVO4來實現Ni的表面處理 69 4.5.1 以不同濺鍍功率與溫度對Ni/BiVO4電化學表現之影響 71 4.5.2 以不同沉積時間與溫度對Ni/BiVO4電化學表現之影響 74 4.5.3 不同溫度退火處理之Ni/BiVO4-7.5k(60W)薄膜之EIS量測 77 4.5.4 不同溫度退火處理之Ni/BiVO4-7.5k(60W)薄膜之PL量測 78 4.5.5 不同溫度退火處理之Ni/BiVO4-7.5k(60W)薄膜之TPC量測 79 4.5.6 不同溫度退火處理之Ni/BiVO4-7.5k(60W)薄膜之SEM分析 80 4.5.7 Ni/BiVO4-7.5k(60W) 450°C薄膜之CstV量測 82 4.6 Ni/BIVO4薄膜之表面結構與成分分析 83 4.6.1 Ni/BIVO4薄膜之XRD分析 83 4.6.2 Ni/BIVO4薄膜之Raman分析 85 4.6.3 Ni/BIVO4薄膜之XPS分析 87 4.6.4 Ni/BiVO4薄膜之UPS、LEIPS及DRS分析 90 4.7 . 全電池光電催化水分解 92 第5章 第五章、結論 94 參考文獻 98

[1] W. Chen, S. Liu, Y. Fu, H. Yan, and L. Qin, C. Lai, "Recent advances in photoelectrocatalysis for environmental applications: sensing, pollutants removal and microbial inactivation," Coordination Chemistry Reviews, 454 (2022) 214341.
[2] N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, and H. M. Chen, "Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives," Chemical Society Reviews, 46 (2017) 337-365.
[3] A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," Nature, 238 (1972) 37-38.
[4] M. D. Bhatt and J. S. Lee, "Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells," Journal of Materials Chemistry A, 3 (2015) 10632-10659.
[5] D. K. Lee, D. Lee, M. A. Lumley, and K.-S. Choi, "Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting," Chemical Society Reviews, 48 (2019) 2126-2157.
[6] Z.-F. Huang, L. Pan, J.-J. Zou, X. Zhang, and L. Wang, "Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress," Nanoscale, 6 (2014) 14044-14063.
[7] W. Yang, R. R. Prabhakar, J. Tan, S. D. Tilley, and J. Moon, "Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting," Chemical Society Reviews, 48 (2019) 4979-5015.
[8] Y. Huang, W. Fan, B. Long, H. Li and F. Zhao, Z. Liu, "Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions," Applied Catalysis B: Environmental, 185 (2016) 68-76.
[9] K.-H. Ye, H. Li, D. Huang, S. Xiao and W. Qiu, M. Li, "Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering," Nature communications, 10 (2019) 3687.
[10] T. Tran-Phu, Z. Fusco, I. Di Bernardo, J. Lipton-Duffin and C. Y. Toe, R. Daiyan, "Understanding the role of vanadium vacancies in BiVO4 for efficient photoelectrochemical water oxidation," Chemistry of Materials, 33 (2021) 3553-3565.
[11] S. Li, J. Qiu, M. Ling, F. Peng, B. Wood, and S. Zhang, "Photoelectrochemical characterization of hydrogenated TiO2 nanotubes as photoanodes for sensing applications," ACS applied materials & interfaces, 5 (2013) 11129-11135.
[12] J. Qiu, S. Li, E. Gray, H. Liu and Q.-F. Gu, C. Sun , "Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries," The Journal of Physical Chemistry C, 118 (2014) 8824-8830.
[13] X. Li, W. Fan, Y. Bai, Y. Liu, F. Wang and H. Bai, "Photoelectrochemical reduction of nitrate to ammonia over CuPc/CeO2 heterostructure: Understanding the synergistic effect between oxygen vacancies and Ce sites," Chemical Engineering Journal, 433 (2022) 133225.
[14] A. Bzainia, C. P. Gomes, R. C. S. Dias, and M. R. P. F. N. Costa, "Chapter 11 - Carbon-based hydrogels," in Sustainable Hydrogels, S. Thomas, B. Sharma, P. Jain, and S. Shekhar Eds.: Elsevier, (2023) 281-324.
[15] X. Zou and Y. Zhang, "Noble metal-free hydrogen evolution catalysts for water splitting," Chemical Society Reviews, 44 (2015) 5148-5180.
[16] L.-N. Shi, L.-T. Cui, Y.-R. Ji, Y. Xie, Y.-R. Zhu, and T.-F. Yi, "Towards high-performance electrocatalysts: Activity optimization strategy of 2D MXenes-based nanomaterials for water-splitting," Coordination Chemistry Reviews, 469 (2022) 214668.
[17] Q. Wang, C. Pornrungroj, S. Linley, and E. Reisner, "Strategies to improve light utilization in solar fuel synthesis," Nature Energy, 7 (2022) 13-24.
[18] D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim and C. W. Moon, "A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes," Journal of Materials Chemistry A, 4 (2016) 9477-9485.
[19] J. Jian, G. Jiang, R. van de Krol, B. Wei, and H. Wang, "Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation," Nano Energy, 51 (2018) 457-480 .
[20] Š. Kment, K. Sivula, A. Naldoni, S. Sarmah, H. Kmentová and M. Kulkarni., "FeO-based nanostructures and nanohybrids for photoelectrochemical water splitting," Progress in Materials Science, 110 (2020) 100632.
[21] C. Jiang, S. J. Moniz, A. Wang, T. Zhang, and J. Tang, "Photoelectrochemical devices for solar water splitting–materials and challenges," Chemical Society Reviews. 46 (2017) 4645-4660.
[22] W. Yang and J. Moon, "Recent advances in earth‐abundant photocathodes for photoelectrochemical water splitting," ChemSusChem, 12 (2019) 1889-1899.
[23] W. Septina, R. R. Prabhakar, R. Wick, T. Moehl, and S. D. Tilley, "Stabilized solar hydrogen production with CuO/CdS heterojunction thin film photocathodes," Chemistry of Materials, 29 (2017) 1735-1743.
[24] S. Masudy-Panah, Y.-J. K. Eugene, N. D. Khiavi, R. Katal, and X. Gong, "Aluminum-incorporated p-CuO/n-ZnO photocathode coated with nanocrystal-engineered TiO2 protective layer for photoelectrochemical water splitting and hydrogen generation," Journal of Materials Chemistry A, 6 (2018) 11951-11965.
[25] C. Li, J. He, Y. Xiao, Y. Li, and J.-J. Delaunay, "Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting," Energy & Environmental Science, 13 (2020) 3269-3306.
[26] Y.-F. Lim, J. J. Choi, and T. Hanrath, "Facile synthesis of colloidal CuO nanocrystals for light-harvesting applications," Journal of Nanomaterials, 2012 (2012) 4-4.
[27] K. Nakaoka, J. Ueyama, and K. Ogura, "Photoelectrochemical behavior of electrodeposited cuo and cu2 o thin films on conducting substrates," Journal of the Electrochemical Society, 151 (2004) C661.
[28] P. Wang, X. Zhao, and B. Li, "ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications," Optics express, 19 (2011) 11271-11279.
[29] J. Li, X. Jin, R. Li, Y. Zhao, X. Wang, X. Liu, "Copper oxide nanowires for efficient photoelectrochemical water splitting," Applied Catalysis B: Environmental, 240 (2019) 1-8 .
[30] W.-M. Jin, J.-H. Kang, and J. H. Moon, "Fabrication of 3D Copper Oxide structure by holographic lithography for photoelectrochemical electrodes," ACS Applied Materials & Interfaces, 2 (2010) 2982-2986.
[31] C.-Y. Chiang, K. Aroh, N. Franson, V. R. Satsangi, S. Dass, and S. Ehrman, "Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting – Part II. Photoelectrochemical study," International Journal of Hydrogen Energy, 36 (2011) 15519-15526.
[32] C.-Y. Chiang, Y. Shin, K. Aroh, and S. Ehrman, "Copper oxide photocathodes prepared by a solution based process," International Journal of Hydrogen Energy, 37 (2012) 8232-8239.
[33] M. Basu, "Porous Cupric Oxide: Efficient photocathode for photoelectrochemical water splitting," ChemPhotoChem, 3 (2019) 1254-1262.
[34] X.-D. Wang, Y.-F. Xu, B.-X. Chen, N. Zhou, H.-Y. Chen and D.-B. Kuang, "3D cathodes of Cupric Oxide nanosheets coated onto macroporous antimony-doped Tin Oxide for photoelectrochemical water splitting," ChemSusChem, 9 (2016) 3012-3018.
[35] J. G. Lee, D.-Y. Kim, J.-H. Lee, M.-w. Kim, S. An and H. S. Jo, "Scalable binder-free supersonic cold spraying of nanotextured Cupric Oxide (CuO) films as efficient photocathodes," ACS Applied Materials & Interfaces, 8 (2016) 15406-15414.
[36] J. Oh, H. Ryu, W.-J. Lee, and J.-S. Bae, "Improved photostability of a CuO photoelectrode with Ni-doped seed layer," Ceramics International, 44 (2017) 89-95.
[37] J. Oh, H. Ryu, and W.-J. Lee, "Effects of Fe doping on the photoelectrochemical properties of CuO photoelectrodes," Composites Part B: Engineering, 163 (2019) 59-66.
[38] A. Cots, P. Bonete, and R. Gómez, "Improving the stability and efficiency of CuO photocathodes for solar hydrogen production through modification with Iron," ACS Applied Materials & Interfaces, 10 (2018) 26348-26356.
[39] H. Zhang, Q. Ding, D. He, H. Liu, and W. Liu, Z. Li, "A p-Si/NiCoSe x core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production," Energy & Environmental Science, 9 (2016) 3113-3119.
[40] K. C. Kwon, S. Choi, J. Lee, K. Hong, W. Sohn, and D. M. Andoshe,., "Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes," Journal of Materials Chemistry A, 5 (2017) 15534-15542.
[41] J. Zheng, Y. Lyu, R. Wang, C. Xie, H. Zhou, and S. P. Jiang, "Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode," Nature Communications, 9 (2018) 3572.
[42] J.-Y. Jung, D. Woong Kim, D.-H. Kim, T. Joo Park, R. B. Wehrspohn, and J.-H. Lee, "Seebeck-voltage-triggered self-biased photoelectrochemical water splitting using HfOx/SiOx bi-layer protected Si photocathodes," Scientific Reports, 9 (2019) 9132.
[43] D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, "Strategies for stable water splitting via protected photoelectrodes," Chemical Society Reviews, 46 (2017) 1933-1954 .
[44] J. H. Kim, H. E. Kim, J. H. Kim, and J. S. Lee, "Ferrites: Emerging light absorbers for solar water splitting," Journal of Materials Chemistry A,8 (2020) 9447-9482.
[45] Y. Shi, T. Han, C. Gimbert-Suriñach, X. Song, M. Lanza, and A. Llobet, "Substitution of native silicon oxide by titanium in Ni-coated silicon photoanodes for water splitting solar cells," Journal of Materials Chemistry A, 5 (2017) 1996-2003.
[46] K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, and D. Wang, "Enabling silicon for solar-fuel production," Chemical reviews, 114 (2014) 8662-8719.
[47] H.-C. Fu, P. Varadhan, M.-L. Tsai, W. Li, Q. Ding, and C.-H. Lin, "Improved performance and stability of photoelectrochemical water-splitting Si system using a bifacial design to decouple light harvesting and electrocatalysis," Nano Energy, 70 (2020) 104478.
[48] X. Shen, M. Yao, K. Sun, T. Zhao, Y. He, and C.-Y. Chi, "Defect-Tolerant TiO2-coated and discretized photoanodes for >600 h of stable photoelectrochemical water oxidation," ACS Energy Letters, 6 (2021) 193-200.
[49] W. Xun, Y. Wang, R. Fan, Q. Mu, S. Ju, and Y. Peng, "Activating the MoS2 basal plane toward enhanced solar hydrogen generation via in situ photoelectrochemical control," ACS Energy Letters, 6 (2021) 267-276.
[50] S. Chu, W. Li, Y. Yan, T. Hamann, I. Shih, D. Wang, "Roadmap on solar water splitting: current status and future prospects," Nano Futures, 1 (2017) 22001.
[51] S. Vanka, E. Arca, S. Cheng, K. Sun, G. A. Botton, and G. Teeter, "High efficiency Si photocathode protected by multifunctional GaN nanostructures," Nano letters, 18 (2018) 6530-6537.
[52] K. K. Pawar, D. V. Desai, S. M. Bodake, H. S. Patil, S. M. More, and A. S. Nimbalkar, "Highly reliable multilevel resistive switching in a nanoparticulated In2O3 thin-film memristive device," Journal of Physics D: Applied Physics, 52 (2019) 175306.
[53] A. Nath, B. K. Mahajan, and M. B. Sarkar, "Ag nanoparticles sheltered In2O3 nanowire as a capacitive MOS memory device," IEEE Transactions on Nanotechnology,19 (2020) 856-863.
[54] A. Nath and M. B. Sarkar, "Surface-plasmon-induced Ag nanoparticles decorated In2O3 nanowires for low noise photodetectors," Plasmonics, 16 (2021) 37-48.
[55] P. Prathap, A. Dahiya, M. Srivastava, S. Srivastava, B. Sivaiah, and D. Haranath, "Anti-reflection In2O3 nanocones for silicon solar cells," Solar energy, 106, (2014) 102-108.
[56] A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, N. Poli9, "In2O3 nanowires for gas sensors: morphology and sensing characterisation," Thin Solid Films, 515 (2007) 8356-8359.
[57] M. Sbeta and A. Yildiz, "Optical response enhancement of GZO/p-Si heterostructures via metal nanoparticles," Materials Research Express, 68 (2019) 085018.
[58] A. Atilgan and A. Yildiz, "Ni‐doped TiO2/TiO2 homojunction photoanodes for efficient dye‐sensitized solar cells," International Journal of Energy Research, 46 (2022) 14558-14569.
[59] Y. Masuda, "Recent advances in SnO2 nanostructure based gas sensors," Sensors and Actuators B: Chemical, (2022) 131876.
[60] A. Nath, B. K. Mahajan, L. R. Singh, S. Vishwas, R. K. Nanda, and M. B. Sarkar, "Enhancing detectivity of indium-oxide-based photodetectors via vertical nanostructuring through glancing angle deposition," Journal of Electronic Materials, 50 (2021) 3722-3730.
[61] A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, "Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting," Advanced Functional Materials, 19 (2009) 1849-1856.
[62] S. Zhang, Z. Liu, M. Ruan, Z. Guo, E. Lei, and W. Zhao, "Enhanced piezoelectric-effect-assisted photoelectrochemical performance in ZnO modified with dual cocatalysts," Applied Catalysis B: Environmental, 262 (2009) 118279.
[63] D. Hu, Z. Zhang, M. Liu, J. Lin, X. Chen, and W. Ma, "Multifunctional UV-shielding nanocellulose films modified with halloysite nanotubes-zinc oxide nanohybrid," Cellulose, 27 (2020) 401-413.
[64] L. Li, M. L. Fernández-Cruz, M. Connolly, E. Conde, M. Fernández, and M. Schuster, "The potentiation effect makes the difference: non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro," Science of the total environment, 505 (2015) 253-260.
[65] A. Fraleoni‐Morgera, I. Cesini, P. Kumar, and C. M. Oddo, "Hydrothermally grown ZnO nanorods as promising materials for low cost electronic skin," ChemNanoMat, 6 (2020) 15-31.
[66] P. Lv, S.-C. Chen, Q. Zheng, F. Huang, and K. Ding, "High electron mobility ZnO film for high-performance inverted polymer solar cells," Applied Physics Letters, 106 (2015) 163902.
[67] W. Song, S. Ma, L. Wang, J. Liu, and Z. Zhao, "Theoretical explanation of the photogenerated carrier separation at the surface junction," ChemCatChem, 9 (2017) 4340-4344.
[68] J.-W. Shi, D. Ma, Y. Zou, Z. Fan, and J. Shi, L. Cheng, "Rational construction of multiple interfaces in ternary heterostructure for efficient spatial separation and transfer of photogenerated carriers in the application of photocatalytic hydrogen evolution," Journal of Power Sources, 379 (2018) 249-260.
[69] P.-Y. Kuang, X.-J. Zheng, J. Lin, X.-B. Huang, and N. Li, X. Li, "Facile construction of dual p–n junctions in CdS/Cu2O/ZnO photoanode with enhanced charge carrier separation and transfer ability," ACS omega, 2 (2017) 852-863.
[70] N. Shibata, S. D. Findlay, H. Sasaki, T. Matsumoto, H. Sawada, and Y. Kohno, "Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy," Scientific Reports, 5 (2015) 10040.
[71] X. An and Y. Zhang, "Fabrication of NiO quantum dot-modified ZnO nanorod arrays for efficient photoelectrochemical water splitting," Applied Physics A, 123 (2017) 1-6.
[72] Z. Liu and X. Wang, "Efficient photoelectrochemical water splitting of CaBi6O10 decorated with Cu2O and NiOOH for improved photogenerated carriers," International Journal of Hydrogen Energy, 43 (2018) 13276-13283.
[73] B. Yuan, X. Liu, J. Liu, M. Li, and D. Wang, "Synthesis of different morphologies CuO nanocrystalline under room temperature," Materials Letters, 236 (2019) 495-497.
[74] B. Li and Y. Wang, "Facile synthesis and photocatalytic activity of ZnO–CuO nanocomposite," Superlattices and Microstructures, 47 (2010) 615-623.
[75] J. Wang et al., "Fabrication of CuO/T-ZnOw nanocomposites using photo-deposition and their photocatalytic property," Applied Surface Science, 258 (2011) 1797-1805.
[76] P. Sathishkumar, R. Sweena, J. J. Wu, and S. Anandan, "Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution," Chemical Engineering Journal, 171 (2011) 136-140.
[77] S. Wei, Y. Chen, Y. Ma, and Z. Shao, "Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance," Journal of Molecular Catalysis A: Chemical, 331 (2010) 112-116.
[78] J. L. Hauser, M. Tso, K. Fitchmun, and S. R. Oliver, "Anodic electrodeposition of several metal organic framework thin films on indium tin oxide glass," Crystal Growth & Design, 19 (2019) 2358-2365.
[79] R. Wang, Y. Kuwahara, K. Mori, and H. Yamashita, "Semiconductor‐based photoanodes modified with metal‐organic frameworks and molecular catalysts as cocatalysts for enhanced photoelectrochemical water oxidation reaction," ChemCatChem, 13 (2021) 5058-5072.
[80] S. G. Shim, J. Tan, H. Lee, J. Park, J. Yun, and Y. S. Park., "Facile morphology control strategy to enhance charge separation efficiency of Mo: BiVO4 photoanodes for efficient photoelectrochemical water splitting," Chemical Engineering Journal, 430 (2022) 133061.

無法下載圖示 全文公開日期 2025/07/24 (校內網路)
全文公開日期 2025/07/24 (校外網路)
全文公開日期 2025/07/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE