簡易檢索 / 詳目顯示

研究生: 蔡閔安
Min-An Tsai
論文名稱: 黏彈性阻尼器受損前後之性能分析與試驗研究
Analytical and Experimental Study on Performance of Intact and Damaged Viscoelastic Dampers
指導教授: 汪向榮
Shiang-Jung Wang
口試委員: 黃震興
Jenn-Shin Hwang
蔡孟豪
Meng-Hao Tsai
游忠翰
Chung-Han Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 239
中文關鍵詞: 黏彈性阻尼器損傷分數微分模型超越設計性能殘餘性能
外文關鍵詞: viscoelastic damper, damage, fractional derivative model, beyond design performance, residual performance
相關次數: 點閱:206下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由先前研究得知,以分數微分模型,模擬黏彈性阻尼器之力學行為,可確實掌握頻率、溫度、剪應變及剪應變率對黏彈性阻尼器性能之影響,然若將其應用於實際建物之地震歷時分析中,尚無法完美地模擬出黏彈性阻尼器於建物中實際的力學行為,尤其是經歷損壞後之性能表現,以及其對於耐震性能之影響。因此,如何適切地以分數微分模型,預測出黏彈性阻尼器實際力學行為,為本研究之探討重點。
藉由實尺寸黏彈性阻尼器進行單軸向循環加載試驗之結果,回歸出考慮頻率、溫度與剪應變等影響其力學行為因素之分數微分模型,並識別出其在不同性能階段下之力學行為,包含設計、超越設計及殘餘性能階段,並將各性能階段應用本研究提出之切換分析模型方法,模擬預測本研究進行之黏彈性阻尼器地震反應歷時試驗結果。比較結果證實,以各性能階段之分數微分模型,應用切換分析模型方法預測黏彈性阻尼器於經歷損傷後的力學行為,具有相當的準確性。
將各性能階段之分數微分模型應用切換分析模型方法,模擬安裝於一依實際建物簡化後之棒狀模型中,黏彈性阻尼器之力學行為,探討於設計、最大考量地震下,其真實之減震效益。結果指出,以此模型模擬之結果,於整體結構行為,確實能有效地控制建物的層間位移與加速度,於個別阻尼器,將可更完整的模擬出其在經歷損傷後,於各剪應變階段下真實的力學行為。此外,相較於應用Kelvin Voigt模型的分析結果,可更為準確且保守地估計裝設黏彈性器建物之減震效益。


The design, beyond design, and residual performances of viscoelastic dampers have been analytically characterized through the fractional derivative method, with considering the effects of frequencies, ambient temperatures, temperature rises, softening, and hardening, in past relevant studies. However, these models were usually identified using uniaxial reversal loading test results. The performances of viscoelastic dampers characterized by the identified models, the performance after suffering damage in particular, under real ground motions have not been experimentally demonstrated yet, not to mention the generalization of the identified models for numerically analyzing viscoelastically damped structures. Therefore, based on the fractional derivative models identified in past relevant studies to characterize the design, beyond design, and residual performances of viscoelastic dampers, a concept of switching these different models in opportune moments is proposed in this study. In comparison with the test results of a full-scale viscoelastic damper under a series of seismic response histories, the proposed concept is verified to be feasible and reasonable. Furthermore, a viscoelastically damped structure is numerically examined. It is indicated that compared with adopting the Kelvin Voigt model, which is simpler and more commonly used for practical design, adopting the fractional derivative models and the proposed concept can more accurately capture the behavior of viscoelastic dampers at different performance stages and, most importantly, can more conservatively evaluate the seismic performance of viscoelastically damped structures.

摘要 I Abstract III 致謝 V 目錄 VII 表目錄 XI 圖目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 研究內容 2 第二章 文獻回顧 5 2.1 黏彈性阻尼器 5 2.2 黏彈性材料 7 2.2.1 力學行為 7 2.2.2 分數微分模型 10 2.2.2.1 擾動頻率影響 10 2.2.2.2 環境溫度影響 13 2.2.2.3 阻尼器內部溫度 14 2.2.2.4 大變形軟化現象 14 2.2.2.5 高速率變形硬化現象 15 2.2.3 黏彈性阻尼器試驗 15 2.2.3.1 試驗配置與程序 16 2.2.3.2 試驗結果 17 2.3 建物簡化模型 19 第三章 黏彈性阻尼器數值分析模型 23 3.1 各性能階段之數值分析模型建立 23 3.1.1 設計性能階段 23 3.1.1.1 剪應變300%以下設計性能階段 23 3.1.1.2 剪應變300%以上設計性能階段 25 3.1.2 破壞後性能階段 26 3.1.2.1 超越設計性能階段 26 3.1.2.2 殘餘性能階段 27 3.2 各性能階段之分析模型切換 28 3.2.1 設計性能階段之分析模型切換 29 3.2.2 破壞後性能階段之分析模型切換 30 3.2.3 設計與破壞後性能階段之分析模型切換 30 第四章 黏彈性阻尼器試驗 33 4.1 試驗目的 33 4.2 含黏彈性阻尼器之高樓建物初步分析模擬 33 4.2.1 含黏彈性阻尼器之高樓建物資訊 34 4.2.2 黏彈性阻尼器之分析模型 35 4.2.3 地震歷時篩選 35 4.3 試驗配置與程序 35 4.4 試驗結果 37 4.4.1 性能試驗結果 37 4.4.2 未經歷損傷之地震反應歷時試驗結果 38 4.4.3 經歷損傷之地震反應歷時試驗結果 38 4.5 分數微分模型預測與試驗結果比較 38 4.5.1 性能試驗比較 39 4.5.1.1 剪應變300%以下之設計性能階段 39 4.5.1.2 剪應變300%以上之設計性能階段 39 4.5.2 地震反應歷時試驗比較 40 4.5.2.1 剪應變300%以下之設計性能階段 40 4.5.2.2 剪應變300%以上之設計性能階段 40 4.5.2.3 經歷損傷之設計、超越設計及殘餘性能階段 41 4.6 Kelvin Voigt模型預測與試驗結果比較 42 4.7 小結與討論 45 第五章 含黏彈性阻尼器之建築結構分析 49 5.1 黏彈性阻尼器之數值分析模型 49 5.1.1 分數微分模型參數選用 50 5.1.1.1 設計性能階段 50 5.1.1.2 超越設計性能階段 50 5.1.1.3 殘餘性能階段 50 5.1.1.4 切換超越設計性能及殘餘性能 50 5.1.2 Kelvin Voigt模型參數選用 51 5.1.2.1 設計性能階段 51 5.1.2.2 超越設計性能階段 51 5.1.2.3 殘餘性能階段 51 5.1.2.4 切換超越設計性能及殘餘性能 51 5.2 實際高樓建物結構分析與探討 52 5.2.1 分數微分模型分析與結果 52 5.2.1.1 樓層加速度 53 5.2.1.2 層間位移 54 5.2.1.3 層間剪力 55 5.2.1.4 阻尼器遲滯迴圈 56 5.2.2 Kelvin Voigt模型分析與結果 56 5.2.2.1 樓層加速度 56 5.2.2.2 層間位移 57 5.2.2.3 層間剪力 58 5.2.2.4 阻尼器遲滯迴圈 59 5.2.3 分數微分模型與Kelvin Voigt模型結果比較 59 5.2.3.1 樓層加速度 60 5.2.3.2 層間位移 61 5.2.3.3 層間剪力 62 5.2.3.4 阻尼器遲滯迴圈 62 5.3 小結 63 第六章 結論與建議 67 6.1 結論 67 6.2 建議 69 參考文獻 71 附表 75 附圖 119

[1]內政部營建署, 建築物耐震設計規範及解說. 臺北, 2011.
[2] T. Soong and M. Constantinou, Passive and active vibration control in civil engineering. 1994.
[3] K. C. Chang, T. T. Soong, M. L. Lai, and E. J. Nielsen, "Viscoelastic dampers as energy dissipation devices for seismic applications," Earthquake Spectra, vol. 9, no. 3, pp. 371-387, 1993.
[4] B. Samali and K. C. S. Kwok, "Use of viscoelastic dampers in reducing wind- and earthquake-induced motion of building structures," Engineering Structures, vol. 17, no. 9, pp. 639-654, 1995.
[5] P. Mahmoodi, L. E. Robertson, M. Yontar, C. Moy, and L. Feld, "Performance of viscoelastic dampers in world trade center towers," Orlando, Florida, 1987.
[6] J. B. Skilling, T. Tschanz, N. Isyumov, P. Loh, and A. G. Devenport, "Experimental studies, structural design and full-scale measurements for the columbia seafirst center," Seattle, Washington, 1986.
[7] J. E. Cermak, H. G. C. Woo, M. L. Lai, J. Chen, and S. L. Danielson, "Aerodynamic instability and damping on a suspension roof," Asia-Pacific Symposium on Wind Engineering, pp. 13-15, 1993.
[8] K. Kasai, M. Teramoto, K. Okuma, and K. Tokoro, "Constitutive rule for viscoelastic materials considering temperature, frequency, and strain sensitivities : Part 1 Linear model with temperature and frequency sensitivities," Journal of Structural and Construction Engineering (Transactions of AIJ), vol. 66, no. 543, pp. 77-86, 2001.
[9] K. Kasai and K. Tokoro, "Constitutive rule for viscoelastic materials considering temperature, frequency, and strain sensitivities : Part 2 Nonlinear model based on temperature-rise, strain and' strain-rate," Journal of Structural and Construction Engineering (Transactions of AIJ), vol. 67, pp. 55-63, 2002.
[10] D. M. Bergman and R. D. Hanson, "Viscoelastic mechanical damping devices tested at real earthquake displacements," Earthquake Spectra, vol. 9, no. 3, pp. 389-417, 1993.
[11] M. L. Lai, K. C. Chang, T. T. Soong, D. S. Hao, and Y. C. Yeh, "Full-scale viscoelastically damped steel frame," Journal of Structural Engineering, vol. 121, no. 10, pp. 1443-1447, 1995.
[12] Z. D. Xu, C. Xu, and J. Hu, "Equivalent fractional Kelvin model and experimental study on viscoelastic damper," Journal of Vibration and Control, vol. 21, 2013.
[13] A. M. G. de Lima, D. A. Rade, H. B. Lacerda, and C. A. Araújo, "An investigation of the self-heating phenomenon in viscoelastic materials subjected to cyclic loadings accounting for prestress," Mechanical Systems and Signal Processing, vol. 58-59, pp. 115-127, 2015.
[14] A. Gemant, "A method of analyzing experimental results obtained from elasto-viscous bodies," Physics, vol. 7, no. 8, pp. 311-317, 1936.
[15] R. Bagley and P. Torvik, "Fractional Calculus – A Different Approach to the Analysis of Viscoelastically Damped Structures," Aiaa Journal - AIAA J, vol. 21, pp. 741-748, 05/01 1983
[16] R. Lewandowski and B. Chorążyczewski, "Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers," Computers & Structures, vol. 88, no. 1, pp. 1-17, 2010.
[17] S. W. Park, "Analytical modeling of viscoelastic dampers for structural and vibration control," International Journal of Solids and Structures, vol. 38, no. 44, pp. 8065-8092, 2001.
[18] T. T. Soong and B. F. Spencer, "Active structural control: theory and practice," Journal of Engineering Mechanics, vol. 118, no. 6, pp. 1282-1285, 1992.
[19] K. C. Chang, T. Soong, S. T. Oh, and M. Lai, "Effect of ambient temperature on viscoelastically damped structure," Journal of Structural Engineering-asce - J STRUCT ENG-ASCE, vol. 118, 1992.
[20] K. C. Chang, T. T. Soong, S. T. Oh, and M. L. Lai, "Seismic behavior of steel frame with added viscoelastic dampers," Journal of Structural Engineering, vol. 121, no. 10, pp. 1418-1426, 1995.
[21] K. C. Chang, S. J. Chen, and M. L. Lai, "Inelastic behavior of steel frames with added viscoelastic dampers," Journal of Structural Engineering, vol. 122, no. 10, pp. 1178-1186, 1996.
[22] K. C. Chang, M. H. Tsai, Y. H. Chang, and M. L. Lai, "Temperature rise effect of viscoelastically damped structures under strong earthquake ground motions," Journal of Mechanics, vol. 14, no. 3, pp. 125-135, 1998.
[23] A. R. Ghaemmaghami and O.-S. Kwon, "Nonlinear modeling of MDOF structures equipped with viscoelastic dampers with strain, temperature and frequency-dependent properties," Engineering Structures, vol. 168, pp. 903-914, 2018.
[24] N. Nakamura, "Improved methods to transform frequency‐dependent complex stiffness to time domain," Earthquake Engineering & Structural Dynamics, vol. 35, pp. 1037-1050, 07/10 2006.
[25] K. M. Mosalam and M. S. Günay, "Seismic retrofit of non-ductile reinforced concrete frames using infill walls as a rocking spine," in Advances in Performance-Based Earthquake Engineering: Springer, 2010, pp. 349-357.
[26] K. L. Shen, T. T. Soong, K. C. Chang, and M. L. Lai, "Seismic behaviour of reinforced concrete frame with added viscoelastic dampers," Engineering Structures, vol. 17, no. 5, pp. 372-380, 1995.
[27] P. Crosby, J. Kelly, and J. P. Singh, "Utilizing visco-elastic dampers in the seismic retrofit of a thirteen story steel framed building," in Proceedings of Structures Congress Xll, Atlanta, Georgia, 1994, pp. 1286-1291.
[28] L. S. Jacobsen, "Dynamic behavior of simplified structures up to the point of collapse," in Proceedings of the Symposium on Earthquake and Blast Effects on Structures, Los Angeles, California, 1952.
[29] J. Penzien, "Dynamic response of elasto-plastic frames," Transactions of the American Society of Civil Engineers, vol. 127, no. 2, pp. 1-13, 1960.
[30] A. S. Veletsos, N. M. Newmark, U.-C. University of Illinois at, and E. Department of Civil, Effect of inelastic behavior on the response of simple systems to earthquake motions. 1960.
[31] G. S. Liou and Y. Y. Kang, "A simplified model for seismic analysis of building structures," in The Third East Asia-Pacific Conference on Structural Engineering Construction, 1991.
[32] Yoshitada Minami, Minani Shirono, Kohei Fujita and Izuru Takewaki (2013),
Stiffness Identification of High-rise Building with Unknown Vibration Source
Using Bending-shear Model and ARX Model, J. Struct. Constr. Eng., AIJ, Vol.78
No.690, 1405-1412.
[33] Yoshiki Ikeda and Hiroya Hanafusa (2014), Direct Identification of Stiffness for
Flexural-shear Building Model Based on Earthquake Observation, J. Struct. Constr.
Eng. 79(705), 1601-1611.
[34] 邱宜甄, "含黏彈性阻尼器結構超越設計變位之試驗分析研究," 2017.
[35] Nippon Steel Corporation. Available: https://www.nipponsteel.com/
[36] 張群英, "考慮黏彈性阻尼器超越及殘餘性能之結構減震效益探討," 2020.
[37] 王煦博, "台灣條件式均值反應譜之發展與應用," 2021.

QR CODE