簡易檢索 / 詳目顯示

研究生: 莊翔宇
Shiang-Yu Chuang
論文名稱: 碳酸鈉存在下硫化鋅的碳熱還原反應
Carbothermic Reduction of Zinc Sulfide in the Presence of Sodium Carbonate
指導教授: 林俊一
Chun-I Lin
口試委員: 劉世賢
none
施信民
none
李嘉平
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 130
中文關鍵詞: 碳熱還原碳酸鈉硫化鋅
外文關鍵詞: Carbothermic reduction, Sodium carbonate, Zinc sulfide
相關次數: 點閱:145下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討碳酸鈉存在下的硫化鋅碳熱還原反應。本反應在熱重分析儀(TGA)中進行,另外我們將反應前及反應後的固體樣品進行X光繞射(XRD)分析、原子吸收光譜儀(AAS) 分析、感應藕合電漿質譜儀(ICP-MS)分析、元素分析儀(EA)分析、掃瞄式電子顯微鏡觀察(SEM)及表面積儀(SAA)分析。
實驗結果發現,碳酸鈉存在下的碳熱還原反應,較碳酸鈣存在下者為快;硫固化效果還不錯。AAS 、ICP-MS及EA的實驗結果相近;SEM發現了含Na2CO3、Na2O、Na2S及Na2SO4。表面積儀的結果顯示,反應初期,固體樣品的小孔表面積、平均小孔直徑及小孔體積大幅下降。反應時間增長後,小孔表面積、平均小孔直徑及小孔體積均趨於穩定。
我們提出了一個機制及模式來說明本反應。
研究中根據原子吸收光譜儀的實驗結果來探討八個變數對鋅生成速率的影響。結果發現氬氣流量不會影響鋅的生成速率,而增加反應溫度、初始C/ZnS莫爾比或初始Na2CO3/ZnS莫爾比與減少樣品高度、碳黑凝聚團大小、碳酸鈉凝聚團或初始固體樣品密度會使鋅的生成速率上升。


Carbothermic reduction of zinc sulfide in the presence of sodium carbonate was carried out in a thermogravimetic analysis system (TGA). Solid samples before and after reaction were analyzed by an X-ray diffractometer (XRD), an atomic absorption spectrometer (AAS), an inductive coupled plasma-mass spectrometer (ICP-MS), an elemental analyzer (EA), a scanning electron microscope (SEM) and a surface area analyzer (SAA).
Experimental results revealed that reduction rate of zinc sulfide in the presence of sodium carbonate was faster than that in the presence of calcium carbonate . The results of AAS, ICP-MS and EA were found to be close to each other. Molten liquid containing Na2CO3,Na2O,Na2S and Na2SO4 was found in the solid sample by SEM. The results of SAA indicated that the pore surface area, pore volume and average pore diameter of a solid sample reduced drastically in the initial stage and when the reaction time elapsed, the changes of the pore surface area , average pore volume and pore diameter remain unchanged.
A mechanism and a model were proposed to interpret this reaction.
Results of AAS were employed to study the effects of eight operating variables on the rate of zinc yield. It has been found that the rate of reduction could not be changed by the variation of argon flow rate. However, it could be increased by increasing reaction temperature, initial molar ratio of C/ZnS, or initial molar ratio of Na2CO3/ZnS , but by decreasing the sample height, size of carbon aggregate, the size of Na2CO3 aggregate ,or initial bulk density.

中文摘要Ι 英文摘要II 誌謝IV 目錄V 圖表索引X 第一章 緒論1 第二章 文獻回顧3 2-1碳酸鈉加熱分解3 2-2碳黑與碳酸鈉的化學反應3 2-3硫化鋅碳熱還原反應4 2-3-1相關文獻及化學反應方程式4 2-3-2化學反應機制6 2-3-3操作變數對鋅生成率的影響11 2-3-3-1惰性氣體流量的影響11 2-2-3-2固體樣品高度的影響11 2-2-3-3反應溫度的影響11 2-2-3-4初始C/ZnS莫耳比的影響12 2-2-3-5初始CaO/ZnS(或CaCO3/ZnS)莫耳比的影響12 2-2-3-6碳粉凝聚團大小的影響13 2-2-3-7 碳酸鈉凝聚團大小的影響13 2-2-3-8初始固體樣品密度的影響13 2-3-4鋅生成速率式14 第三章 實驗部分16 3-1 氣體與藥品16 3-1-1 氣體16 3-1-2 藥品16 3-2 實驗設備與儀器17 3-2-1 熱重分析儀17 3-2-2 樣品分析設備22 3-2-3 其他儀器與設備24 3-3實驗原理、操作條件與實驗步驟25 3-3-1 熱重分析儀25 3-3-1-1固體樣品的製備步驟25 3-3-1-2 碳熱還原反應的實驗步驟26 3-3-2 X光繞射儀28 3-3-2-1 X光繞射原理28 3-3-2-2 X光繞射分析的操作條件30 3-3-3原子吸收光譜儀30 3-3-4感應耦合電漿質譜儀31 3-3-5元素分析儀34 3-3-6掃瞄式電子顯微鏡34 3-3-7表面積儀35 3-3-8高溫微差掃描熱卡計37 3-4 工作項目38 3-4-1 硫化鋅碳熱還原實驗38 3-4-1-1固體樣品之化學成份及物理性質變化38 3-4-1-2反應變數對硫化鋅碳熱還原反應之影響38 3-4-2 附加實驗40 第四章 結果與討論41 4-1 熱力學分析41 4-2 固體樣品之觀察41 4-3 熱重分析儀的空白實驗44 4-4 X光繞射儀之分析結果47 4-4-1硫化鋅、碳酸鈉及反應前固體樣品之分析結果47 4-4-2不同反應時間碳熱還原反應固體樣品之分析結果47 4-5原子吸收光譜儀與熱重分析儀之分析結果60 4-5-1原子吸收光譜儀與熱重分析儀的再現性60 4-5-2原子吸收光譜儀的分析結果比較63 4-5-3 ZnS/C/Na2CO3系統與ZnS/C/CaCO3系統反應速率的比較66 4-6感應藕合電漿質譜儀與元素分析儀之分析結果66 4-6-1感應藕合電漿質譜儀之分析結果66 4-6-2元素分析儀之分析結果67 4-7電子顯微鏡之分析結果69 4-7-1個別反應物之顯微照片 69 4-7-2不同反應時間固體樣品之顯微照片72 4-8表面積儀之測定結果72 4-9雷射粒徑分析儀之分析結果79 4-10附加實驗82 4-11反應機制與模式84 4-11-1反應機制84 4-11-2反應模式88 4-12操作變數對鋅生成率的影響88 第五章 結論103 第六章 感想與建議104 參考文獻106 附錄一:實驗數據111 附錄二:熱重分析原始數據122 作者簡介130

Abramowitz, H. and Y. K. Rao, “Direct Reduction of Zinc Sulfide by Carbon and Lime”, Trans. Inst. Min. Metall. (Sec. C), 87, 180-188 (1978).
Chrisier P. and Roux F., “A Study of the Electrical Conductivity and Transition Points of Sodium Carbonate”, Journal of Soild State Chemistry, 22, 245-251(1977)
Chapman, S. J., “Introduction to Fortran 90/95”, First Edition, McGraw-Hill, New York (1998).
Chen, H. K., “A Study on the Carbothermic Reduction of Zinc Oxide”, Technical Report to National Science of Republic of China, NSC88-2214-E-146-002 (1999a).
Chen, H. K., “Effect of Additives on Carbothermic Reduction of Zinc Oxide”, Journal of Materials Science Letters, 18, 1,399-1,400 (1999b).
Cullity, B. D. and S. R. Stock, “Elements of X-Ray Diffraction”, 3rd edition, Prentice Hall, Inc., Upper Saddle River, New Jersey (2001).
Fogler H. S., “Elements of Chemical Reaction Engineering”, 3rd edition, Prentice Hall PTR, Upper Saddle River, New Jersey (1999).
Gancy A. B., “Thermal Decomposition of sodium Sesquicarbonate ”, Journal of Chemical and Enginerring Data, 8, 301-305(1963)
Guger, C. E. and F. S. Manning, “Kinetics of Zinc Oxide Reduction With Carbon Monoxide”, Metallurgical Transactions, 2(1), 3083-3090 (1971).
IMSL: User’s Manual, IMSL Math/Library, Fortran Subroutines for Mathematical Applications, l. l Ed., IMSL, Houston, Texas (1989).
Joint Committee on Powder Diffraction Standards, Powder Diffraction File, Card 5-566, Card 19-1130, Card 5-492, Card 25-815, Card 23-528, Card 23-441, Card 8-31 International Center for Diffraction Data, Swarthmore, Pennsyvania (1990).
Kim, J.W. and H.G. Lee, “Thermal and Carbothermic Decomposition of Na2CO3 and Li2CO3”, Metallurgical and Materials Transactions B, 32B, 17-24 (2001)
Kubaschewski O., P. J. Spencer and C. B. Alock, “Materials Thermochemistry”, Pergamon Press, Oxford, England (1993).
Lee, J.J., C.I.Lin and H.K.Chen, “Carbothermal Reduction of Zinc Ferrite”, Metallurgical and Materials Transactions, 32B, 1,033-1,040 (2001).
Lindfield, G. R. and J. Penny, “Numerical Methods Using MATLAB”, 2nd edition, Prentice Hall, Upper Saddle River, New Jersey (2000).
Lopez, F. A., F. Medina, J. Medina and M. A. Palacios, “Process for Recovery of Non-Ferrous Metals from Steel Mill Dusts Involving Pelletizing and Carbothermic Reduction”, Ironmaking and Steelmaking, 18(4), 292-295 (1991).
Rao, Y. K., “Catalysis in Extractive Metallurgy” Journal of Metals, July, 46-50 (1983).
Rao, Y. K. and B. P. Jalan, “The Reduction of Zinc Oxide by Carbon: Non-Catalyzed Reaction”, Metallurgical Society of CIM, 1-5 (1977).
Skopov, G. V., G. P. Kharitidi and A. I. Tikhonov, “Reduction of Zinc from the Sulfide by Carbon in the Presence of Calcium Oxide or Calcium Carbonate”, Izv. Vyssh. Ucheb. Zaved., Tsvet. Metally., 4, 33-37 (1976); Chem. Abstr., 85, 146312 (1976).
Szekely, J., J. W. Evans and H. Y. Sohn, “Gas-Solid Reactions”, Academic Press, New York, New York (1976).
Stanley I. Sandler, “Chemical and Engineering Therodynamics”,3rd edition, John Wiley & Sons ,Inc. ,New York (1999)
Ueda, Y., T. Nakamura and F. Noguchi, “Direct Reduction of Zinc Sulfide”, J. Min. Met. Japan, 99, 127-132 (1983).
Wang, J. C., M.T. Hepworth and K. J. Reid, “Recovering Zn, Pb, Cd and Fe From Electric Furnace Dust”, Journal of Metals, 4, 42-45 (1990).
Weast, R. C., “Handbook of Chemical and Physics”, 51st edition, The Chemical Rubber CO., Cranwood Parkway, Cleveland, Ohio (1971).
Zhang, C., I. Asakura and O. Ogawa, “Direct Reduction of Zinc Sulfide Concenrtrate with Coal and Calcium Oxide”, J. Min. Met. Japan, 104, 469-474 (1988a).
Zhang, C., I. Asakura and O. Ogawa, “Direct Reduction of Zinc Sulfide Concenrtrate with Coal and Calcium Carbonate”, J. Min. Met. Japan, 104, 837-841 (1988b).
Zhang, C. F., S. Ryokichi, A. Iwazo, O. Osamu and R. Q. Peng, “Studies on the Rate Controlling Step for the Reduction of Zinciferous Coked Briquettes”, Metallurgical Review of MMIJ, 6(1), 38-45 (1989).
王麗華,”油脂工業廢白土的熱再生研究”,碩士論文,國立台灣科技大學,化學工程研究所 (1998)。
呂維明及戴怡德,”粉粒體粒徑量測技術”,高立圖書股份有限公司(1997)。
李志仁,”鋅鐵礦碳熱還原之動力學研究”, 碩士論文,國立台灣科技大學,化學工程研究所 (1999)。
林敬仁、楊美惠、楊寶旺及廖德章,”英、中、日化學大辭典”,高立圖書股份有限公司 (1993)。
吳哲銘,”碳酸鈣存在下碳熱還原反應回收硫化鋅中的鋅”,碩士論文,國立台灣科技大學,化學工程研究所 (2004)。
許樹恩及吳泰伯,”X光繞射原理與材料結構分析”,國科會精密儀器中心 (1992)。
徐華青,”氧化鋅廢觸媒加碳酸鈣碳熱還原以回收鋅之研究”,碩士論文,國立台灣科技大學,化學工程研究所 (2001)。
陳錫圭,“煤粉直接還原鐵礦或礦泥速率式之探討”,碩士論文,國立台灣工業技術學院,化學工程研究所 (1990)。
黃靖翔,”氧化鈣存在情況下藉由碳熱還原反應回收硫化鋅中的鋅”,碩士論文,國立台灣科技大學,化學工程研究所 (2003)。
彭鈺謙,”碳酸鋰與碳酸鈣存在下硫化鋅的碳熱還原反應”,碩士論文,國立台灣科技大學,化學工程研究所 (2005)。

QR CODE