簡易檢索 / 詳目顯示

研究生: Maria Yuliana
Maria - Yuliana
論文名稱: 從腰果皮中萃取並分析其中之澱粉及酚類化合物
Extraction and Analysis of Starch and Phenolic Compounds from Cashew Nut-Shell
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: 徐治平
Jyh-Ping Hsu
張慶源
Ching-Yuan Chang
李振綱
Cheng-Kang Lee
陳秀美
Hsiu-Mei Chen
林析右
Shi-Yow Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 100
中文關鍵詞: 脂腰果殼管柱層析酚化合物索氏萃取澱粉次臨界水萃取超臨界二氧化碳萃取二階段萃取
外文關鍵詞: cashew nut-shell, column chromatography, phenol, soxhlet extraction, starch, subcritical water extraction, supercritical CO2 extraction, two-step extraction
相關次數: 點閱:302下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腰果殼液(CNSL)中所含之長鏈酚化合物具有許多用途。本研究探討從腰果萃取得到CNSL時,不同萃取方法對產率,萃取液組成及特性之影響。所用萃取方式有四種:超臨界二氧化碳(SC-CO2)萃取法(40°C, 300 bar, 4 h)、次臨界水(SCW)萃取法(140°C, 22 bar, 1 h)、索氏萃取法(溶劑沸點, 1 bar, 30 h)及二步驟萃取法(先以索氏萃取,再以次臨界水萃取)。
    以不同方式所得萃取液特性有明顯差異。甲醇索氏萃取及二階段萃取之萃取液顏色較暗且混濁,而己烷索氏萃取及SC-CO2萃取之萃取液顏色較淡且清澈。GC-FID/MS質譜顯示不同方式所得萃取液之組成不同。二階段萃取之萃取液含81.17 - 82.98%長鏈酚化合物(約為腰果殼乾重之50%),其中主要成份為單不飽和之cardanol,此方法比其他方法產生較多總酚化合物。次臨界水萃取法對單不飽和之cardanol及stigmasterol有高選擇性,而超臨界二氧化碳萃取法所得萃取液含高濃度之anacardic acid及cardol。
    本研究利用二階段逆相矽膠管柱層析來純化所得之長鏈酚化合物。最佳操作條件為:管柱長對直徑比= 8:1、CNSL對矽膠質量比= 1:20並且以甲醇為移動相。二階段逆相矽膠管柱層析成功的從CNSL中分離出anacardic acid (純度98.79 wt.%、回收率82.42 wt.% )、cardol (純度99.34 wt.% 、回收率80.71 wt.%) and cardanol (純度99.18 wt.% 、回收率81.82 wt.%)。從H-NMR分析得知,anacardic acid (C22H36O3)及cardanol (C21H36O) 為飽和形態而cardol (C21H30O2)則擁有三不飽和之側鏈。
    在從去除酚化合物之後,可由去脂腰果殼中得到85.01 wt.%之澱粉。本研究發現此澱粉有高含量(75.35 wt.%)之amylopectin,此結果佐證由熱分析所得此澱粉有高結晶度之結果。對澱粉之形態分析顯示在澱粉顆粒表面鍵結著樹酯。由於具高結晶度、顆粒表面鍵結著樹酯且成本低,由去脂腰果殼所得澱粉有潛力成為塑膠工業之原料。


    Long chain phenols contained in cashew nut shell liquid (CNSL) are found to have important applications. The impact of different extraction methods on CNSL yield, selectivity, composition and characteristic of extracts was investigated in this work. Four methods were employed: Supercritical carbon dioxide (SC-CO2) extraction (40°C, 300 bar, 4 h), subcritical water (SCW) extraction (140°C, 22 bar, 1 h), soxhlet extraction (solvent boiling point, 1 bar, 30 h), and two-step extraction, which comprises a solvent extraction followed by a SCW extraction.
    Characteristics of the extracts differed significantly. Methanol and two-step extractions resulted in darker and more turbid extracts, while n-hexane and SC-CO2 extracts were clearer and lighter in color. GC-FID/MS chromatograms showed differences in compositions of the extracts obtained by different methods. Two-step extraction yielded extracts that contain 81.17 - 82.98% long chain phenols (ca. 50% based on dry CNS) with monounsaturated cardanol as the major compound, producing higher amount of total phenols than other methods. SCW extraction showed high selectivity towards monounsaturated cardanol and stigmasterol, while high concentration of monounsaturated anacardic acid and cardol appeared in SC-CO2 extract.
    Two-step RP silica gel column chromatography was performed to purify these long chain phenols. Optimum conditions were found to be: column height to diameter ratio = 8:1, CNSL to silica gel mass ratio = 1:20 and pure methanol as mobile phase. Two-step RP silica gel column chromatography was successfully conducted to fractionate anacardic acid (98.79 wt.% purity and 82.42 wt.% recovery), cardol (fraction 2.2, 99.34 wt.% purity and 80.71 wt.% recovery) and cardanol (99.18 wt.% purity and 81.82 wt.% recovery) from CNSL. The H-NMR analysis reported that anacardic acid (C22H36O3) and cardanol (C21H36O) found are of saturated form, while cardol (C21H30O2) possesses tri-unsaturated side chain.
    After the removal of phenols from CNS, a product that contains 85.01 wt.% starch was recovered from the defatted CNS. It was found that the starch obtained possesses high amylopectin content (75.35 wt.%), which supports the results of thermal analysis that proved the high crystallinity of starch. Morphological study of the starch showed that bonded resins were found attached to the starch granules. Due to high crystallinity, the presence of bonded resins and low cost, starch from defatted CNS can be considered as a prospective renewable material in polymer industries.

    Abstract (Chinese) I Abstract (English) III Acknowledgement V Table of Contents VI Abbreviations X List of Figures XI List of Tables XIII Chapter 1. Introduction 1 Chapter 2. Literature review 5 2.1. Cashew nut-shell (CNS) 5 2.2. Subcritical water (SCW) extraction 7 2.3. Supercritical CO2 (SC-CO2) extraction 9 2.4. Soxhlet extraction 11 2.5. Reversed-phase (RP) silica gel column chromatography 12 2.6. Starch structure and isolation 14 2.7. Starch based polymer 15 Chapter 3. Experimental 17 3.1. Chemicals 17 3.1.1. Materials 17 3.1.2. Solvents 17 3.1.3. Reagents 17 3.1.4 Analysis kits and chemicals 18 3.2. Equipments 18 3.3. Experimental procedures 19 3.3.1. CNSL extractions 19 3.3.1.1. SCW extraction 19 3.3.1.2. SC-CO2 extraction 20 3.3.1.3. Soxhlet extraction 21 3.3.1.4. Two-step extraction 22 3.3.2. Degumming and dewaxing of CNSL 24 3.3.3. CNSL characteristic analysis 24 3.3.4. CNSL composition analysis 25 3.3.5. Purification of phenols by two-step reversed phase (RP) silica gel column chromatography 26 3.3.5.1. RP silica gel column preparation 26 3.3.5.2. RP silica gel column chromatography of phenols 26 3.3.5.3. TLC analysis of phenols 27 3.3.5.4. HPLC analysis of phenols 27 3.3.5.5. H-Nuclear magnetic resonance (H-NMR) analysis of phenols 28 3.3.6. Purification of starch from defatted CNS 28 3.3.7. Defatted CNS starch analysis 29 3.3.7.1. Total starch analysis 29 3.3.7.2. Protein, ash and total dietary fiber analysis (TDF) 30 3.3.7.3. Total amylose content analysis 30 3.3.7.4. Swelling and solubility 30 3.3.7.5. Thermal analysis 31 3.3.7.6. Scanning electron microscopy (SEM) 32 Chapter 4. Results and Discussions 33 4.1. Effect of extraction methods on characteristic and composition of CNSL 33 4.1.1. Optimization study of SCW extraction and SC-CO2 extraction of CNSL 33 4.1.1.1. SCW extraction of CNSL 33 4.1.1.2. SC-CO2 extraction of CNSL 35 4.1.2. Comparative study of extraction methods 36 4.1.2.1. Characteristics of CNS extract 36 4.1.2.2. Gum, wax and organic matters 39 4.1.2.3. Compositions of CNS extracts 41 4.2. Purification of three major phenolics of CNS 44 4.2.1. Factors that affect column efficiency 44 4.2.2. Two-step RP silica gel column chromatography 50 4.3. Defatted cashew nut shell starch: Isolation and characterization 56 4.3.1. Starch purity 56 4.3.2. Physicochemical properties of starch 57 4.3.3. Thermal properties of starch 59 4.3.4. Morphology of starch 64 Chapter 5. Conclusions 67 References 70

    Andrade, T.J.A.S., Araujo, B.Q., Cito, A.M.G.L., Silva, J., Saffi, J., Richter, M.F., Ferraz, A.B.F., 2011. Antioxidant properties and chemical composition of technical Cashew Nut Shell Liquid (tCNSL) Food Chem. 126, 1044 - 1048.
    AOAC Official Method 996.11, 1996. Starch (Total) in cereal Products : Amyloglucosidase-α-amylase method, in : W. Horwitz (Ed.), Official Methods of Analysis of AOAC International, AOAC International, Gaithersburg, Maryland, United States.
    AOCS Official Method Ba 4a-38, 1997. Nitrogen-Ammonia-Protein Modified Kjedahl Method, in : D. Firestone (Ed.), Official Methods and Recommended Practices of the AOCS. American Oil Chemists' Society, Champaign, IL, USA.
    AOCS Official Method Ba 5a-49, 1997. Ash, in : D. Firestone (Ed.), Official methods and recommended practices of the AOCS. American Oil Chemists' Society, Champaign, IL, USA.
    AOCS Official Method Cc 13c-50, 1997. Color Spectrophotometric Method, in : Firestone, D. (Ed.), Official Methods and Recommended Practices of the AOCS. American Oil Chemists’ Society, Champaign, IL, U.S.A.
    Assuncao, R.B., Mercadante, A.Z., 2003. Carotenoids and ascorbic acid from cashew apple (Anacardium occidentale L.) : variety and geographic effects. Food Chem. 81, 495 - 502.
    Atwell, W. A., Hood, L., Lineback, D., Varriano-Morston, E., & Zohel, H., 1988. The terminology and methodology associated with basic starch phenomenon. Cereal Food World, 33, 306-311.
    Ayala, R.S., Castro, L., 2001. Continuous subcritical water extraction as a useful tool for isolation of edible essential oils. Food Chem, 75, 109– 113.
    Azevedo, D.C.S., Rodrigues, A., 2000. Obtainment of high-fructose solutions from cashew (Anacardium occidentale) apple juice by simulated moving-bed chromatography. Sep. Sci. Technol. 35, 2561 - 2581.
    Balch, R.T., 1931. Measurement of turbidity with a spectrophotometer. Ind. Eng. Chem. Anal. Ed. 3, 124-127.
    Barichello, V., Yada, R. Y., Coffin, R. H., & Stanley, D. W., 1990. Low temperature sweetening in susceptible and resistant potatoes: starch structure and composition. J Food Sci, 54, 1054-1059.
    Castro, M.D.L., Garcia-Ayuso, L.E., 1998. Soxhlet extraction of solid materials : an outdated technique with a promising innovative future. Anal. Chim. Acta 369, 1 - 10.
    Castro, M. D. L, Jimenez, C. M. M., 1998. Potential of water for continuous automated sample-leaching. Trend Anal Chem, 17, 441–447.
    Chalchat, J. C., Garry, R. P., Michet, A., 1991. Chemical composition of essential oil of Calendula officinalis L. (pot marigold). Flavour Frag J, 6, 189–192.
    De-Pooter, H. L., Aboutabl, E. A., El-Shabrawy, A. O., 1995. Chemical composition and antimicrobial activity of essential oil of lead, stem and rhizome of Alpinia speciosa (J.C. Wendl.) K. Schum. grown in Egypt. Flavour Frag J, 10, 63–67.
    Deptan, 2009. Annual Database of Cashew (Fruit) Production. Ministry of Agriculture Republic of Indonesia, Indonesia.
    Fabian, C., Ayucitra, A., Ismadji, S., & Ju, Y. H., 2011. Isolation and characterization of starch from defatted rice bran. J Taiwan Inst Chem E, 42, 86-91.
    Fabian, C., Tran-Thi, N.Y., Kasim, N.S., Ju, Y.H., 2012. Release of phenolic acids from defatted rice bran by subcritical water treatment, J Sci Food Agri, 90 (15), 2576-2581
    FAOSTAT. 2009. Crops Production Statistics. http://faostat.fao.org/: FAO
    Fathima, A.A., Ramakrishnan, V., 2009. Binary mixture of p-methylbenzaldehyde with polar and nonpolar solvents. J. Raman Spectrosc 40, 253 - 259.
    Fernandez, P. V., Jimenez, C. M. M., Castro, M. D. L., 2000. An approach to the static-dinamic subcritical water extraction of laurel essential oil: comparison with conventional techniques. Analyst, 125, 481–485.
    Flipse, E., Keetels, C. J. A. M., Jacobson, E., & Visser, R. G. F., 1996. The dosage effect of the wildtype GBSS allele is linear for GBSS activity, but not for amylose content: absence of amylose has a distinct influence on thew physico-chemical properties of starch. Theor Appl Genet, 92, 121-127.
    Francisco, J.C., Danielsson, B., Kozubek, A., Dey, E.S., 2005. Application of supercritical carbon dioxide for the extraction of alkylresorcinols from rye bran, J Supercrit Fluid, 35, 220–226.
    Galliard, T., 1987. Starch-properties and potential, Published for the Society of Chemical Industry by Wiley, Chichester, England.
    Gamiz-Gracia, L., Castro, M. D. L., 2000. Continuous subcritical water extraction of medicinal plant essential oil: comparison with conventional techniques. Talanta, 51, 1179–1185.
    Gunawan, S., Ismadji, S., Ju, Y.H., 2008. Design and operation of a modified silica gel column chromatography, J Chin Inst Chem E, 39, 625–633.
    Gunawan, S., Ju, Y.H., 2009. Vegetable Oil Deodorizer Distillate: Characterization, Utilization and Analysis, Separ Purif Rev, 38 (3), 207-241.
    Ha, T.J., Kubo, I., 2005. Lipoxygenase inhibitory activity of anacardic acids. J. Agric. Food. Chem. 53, 4350 - 4354.
    Haghighat Khajavi, S., Ota, S., Kimura, Y., Adachi, S., 2006. Kinetics of maltooligosaccharide hydrolysis in subcritical water. J Agri Food Chem, 54, 3663–3667.
    Han, X., Berthod, A., Wang, C., Huang, K., Armstrong, D.W., 2007. Super/Subcritical fluid chromatography separations with four synthetic polymeric chiral stationary phases, Chromatographia, 65, 381–400.
    Hartonen, K., Inkala, K., Kangas, M., Riekkula, M.L., 1997. Extraction of polychlorinated biphenyls with water under subcritical conditions. J Chromatogr A, 785, 219–226.
    Hawthorne, S.B., Grabanski, C.B., Martin, E., Miller, D.J., 2000. Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix. J. Chromatogr. A 892, 421 - 433.
    Herrero, M., Cifuentes, A., Ibanez, E., 2006. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food by-products, algae and microalgae. Food Chem. 98, 136 - 148.
    Hoover, R., 2001. Composition, molecular structure, and physico-chemical properties of tuber and root starches: a review. Carbohyd Polym, 45, 253-267.
    Ibanez, E., Kubatova, A., Senorans, F.J., Cavero, S., Reglero, G., Hawthorne, S.B., 2003. Subcritical water extraction of antioxidant compounds from rosemary plants, J Agri Food Chem, 51, 375–382.
    Jimenez, C. M. M., Castro, M. D. L., 1999. Isolation of eucalyptus essential oil for GC-MS analysis by extraction with subcritical water. Chromatographia, 50, 578–582.
    Jimenez, C. M. M., Ubera, J. L., Castro, M. D. L., 1999. Comparison of continuous sub-critical water extraction and hydrodistillation of marjoram essential oil. J Chromatogr, 855, 625–632.
    Kasim, N.S., Tsai, T.H., Gunawan, S., Ju, Y.H., 2009. Biodiesel Production from Rice Bran Oil and Supercritical Methanol. Bioresour. Technol. 100, 2399 - 2403.
    Kim, S. Y., Wiesenborn, D. P., Orr, P. H., & Grant, L. A., 1995. Screening potato starch for novel properties using differential scanning calorimetry. J Food Sci, 60, 1060-1065.
    Kozubek, A., Zamowski, R., Stasiuk, M., Gubernator, J., 2001. Natural amphiphilic phenols as bioactive compounds. Cell. Mol. Biol. Lett. 6, 351 - 355.
    Kubo, I., Ochi, M., Vieira, P.C., Komatsu, S., 1993. Antitumor agents from the cashew (Anacardium occidentale) apple juice. J. Agric. Food. Chem. 41, 1012 - 1015.
    Kubo, J., Lee, J.R., Kubo, I., 1999. Anti-helicobacter pylori agents from the cashew apple. J. Agric. Food. Chem. 47, 533 - 537.
    Leach, H. W., 1965. Gelatinization of starch, in : R. L. Whistler & E. F. Paschall (Eds.), Starch: Chemistry and Technology, Vol I. Fundamental Aspects (pp. 289-307), Academic Press, New York.
    Liu, H.J., Finch, J.W., Lavallee, M.J., Collamati, R.A., 2007. Effects of column length, particle size, gradient length and flow rate on peak capacity of nano-scale liquid chromatography for peptide separations, J Chromatogr A, 1147, 30–36.
    MacLeod, A.J., Troconis, N.G., 1982. Volatile flavour components of cashew "apple" (Anacardium occidentale). Phytochem. 21, 2527 - 2530.
    Madsen, M. H., & Christensen, D. H., 1996, Changes in viscosity properties of potato starch during growth. Starch, 48, 245-249.
    Maia, J.G.S., Andrade, E.H.A., Zoghbi, M.G.B., 2000. Volatile constituents of the leaves, fruits and flowers of cashew (Anacardium occidentale L.). J. Food Compos. Anal. 13, 227 - 232.
    Majors, R.E., 2003. The cleaning and regeneration of HPLC reversed-phase HPLC columns. LG.GC Europe Column Watch July 2003, 2-6.
    Melo Cavalcante, A.A., Rubensam, G., Erdtmann, B., Brendel, M., Henriques, J.A.P., 2005. Cashew (Anacardium occidentale) apple juice lowers mutagenicity of aflatoxin B1 in S. typhimurium TA102. Genet. Mol. Biol. 28, 328 - 333.
    Michodjehoun-Mestres, L., Souquet, J.M., Fulcrand, H., Bouchut, C., Reynes, M., Brillouet, J.M., 2009. Monomeric phenols of cashew apple (Anacardium occidentale L.). Food Chem. 112, 851 - 857.
    Mriziq, K.S., Guiochon, G., 2008. Column properties and flow profiles in over-pressured thin layer chromatography. J Chromatogr A, 1187, 180-187
    Patel, R.N., Bandyopadhyay, S., Ganesh, A., 2006. Extraction of cashew (Anacardium occidentale) nut shell liquid using supercritical carbon dioxide. Bioresour. Technol. 97, 847 - 853.
    Philip, J.Y.N., Fransisco, J.D.C., Dey, E.S., Buchweishaija, J., Mkayula, L.L., Ye, L., 2008. Isolation of anacardic acid from natural cashew nut shell liquid (CNSL) using supercritical carbon dioxide. J. Agric. Food. Chem. 56, 9350 - 9354.
    Prosky, L., Asp, N. G., Scheweizer, T. F., de Vries, J. W., & Furda, I., 1988. Determination of insoluble, soluble and total dietary fiber in foods and food products: Interlaboratory study. Journal - Assoc Offic Anayt Chem, 71(5), 1017-1023.
    Queiroz, A. U. B., & Collares-Queiroz, F. P., 2009. Innovation and industrial trends in bioplastics. J Macromolecul Sci: C: Polym Rev, 49, 65-78.
    Rodrigues, F.H.A., Feitosa, J.P.A., Ricardo, N.M.P.S., de Franca, F.C.F., Carioca, J.O.B., 2006. Antioxidant activity of cashew nut shell liquid (CNSL) derivatives on the thermal oxidation of synthetic cis-1,4-polyisoprene. J. Braz. Chem. Soc. 17, 265 - 271.
    Rogalinski, T., Herrmann, S., Brunner, G., 2005. Production of amino acid from bovine serum albumin by continuous sub-criticalwater hydrolysis. J Supercrit Fluid, 36, 49–58.
    Sadasivam, S., & Manickam, A., 1996. Biochemical methods, New Age International, New Delhi, India.
    Sarubbo, L.A., Oliveira, L.A., Porto, A.L.F., Duarte, H.S., Carneiro-Leao, A.M.A., Lima-Filho, J.L., Campos-Takaki, G.M., Tambourgi, E.B., 2000. New aqueous two-phase system based on cashew-nut tree gum and poly(ethylene glycol). J. Chromatogr. B 743, 79 - 84.
    Sasaki, T., Yasui, T., & Matsuki, J., 2000. Effect of amylose content on gelatinization, retrogradation and pasting properties of starches from waxy and non-waxy wheat and their F1 seeds. Cereal Chem, 77, 58-63.
    Setianto, W.B., Yoshikawa, S., Smith Jr., R.L., Inomata, H., Florusse, L.J., Peters, C.J., 2009. Pressure profile separation of phenolic liquid compounds from cashew(Anacardium occidentale) shell with supercritical carbon dioxide and aspects of its phase equilibria. J. Supercrit. Fluid 48, 203 - 210.
    Shelton, D. R., & Lee, W. J., 2000. Cereal carbohydrates, in : K. Kulp & J. J. G. Ponte (Eds.), Handbook of cereal science and technology (pp. 385-415), Marcell Decker, New York.
    Shobha, S.V., Krishnaswamy, P.R., Ravindranath, B., 1992. Phenolic Lipid Composition During Development of Cashew. Phytochem. 31, 2295 - 2297.
    Shotipruk, A., Kiatsongserm, J., Pavasant, P., Goto, M., Sasaki, M., 2004. Pressurized hot water extraction of anthraquinones from the roots of Morinda citrifolia. Biotechnol Progr, 20, 1872–1875.
    Silva, K.D.P., Collares, F.P., Finzer, J.R.D., 2000. A simple and rapid method for estimating the content of solids in industrialized cashew juice. Food Chem. 70, 247 - 250.
    Simandi, B., Kery, A., Lembercovics, E., Oszagyan, M., Ronyai, E., Mathe, I., Fekete, J., Hethelyi, E., 1996. Supercritical fluid extraction of medical plants. Process Technol Proceed, 12, 357–361.
    Singh, N., Singh, J., Kaur, L., Sodhi, N. S., & Gill, B. S., 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food chem, 81, 219-231.
    Singh, V., Okadome, H., Toyoshima, H., Isobe, S., & Ohtsubo, K., 2000. Thermal and physicochemical properties of rice grain, flour and starch. J Agri Food Chem, 48(7), 2639-2647.
    Smith Jr., R.L., Malaluan, R.M., Setianto, W.B., Inomata, H., Arai, K., 2003. Separation of cashew (Anacardium occidentale L.) nut shell liquid with supercritical carbon dioxide. Bioresour. Technol. 88, 1 - 7.
    Snyder, L. R., Kirkland, J.J., 1979. Introduction to Modern Liquid Chromatography 2nd Ed. (p. 321), John Wiley and Sons Inc., New York, U.S.A.
    Stevens, D. J., & Elton, G. A. H., 1971. Thermal properties of starch/water system. I. Measurement of heat of gelatinization by dfferential scanning calorimetry. Starch, 23, 8-11.
    Tyman, J. H. P., 1978. Long chain phenols XII: Compositional studies : The polymeric material in the unsaturated phenols of Anacardium occidentale. J Chromatogr, 156, 255-266.
    Verma, R. K., Uniyal, G. C., Gupta, M. M., 1990. High-performance liquid chromatography of poppy straw. Indian J Pharm Sci, 52, 276–278.
    Wang, Y. J., Liu, W. J., & Sun, Z. H., 2003. Effects of granule size and shape on morphology and tensile properties of LDPE and starch blends. J Mater Sci Lett, 22, 57-59.
    Ward, K. E. J., Hoseney, R. C., & Seib, P. A., 1994. Retrogradation of amylopectin from maize and wheat starches. Cereal Chem, 71, 150-155.
    Yang, Y., Hawthorne, S. B., Miller, D. J., 1997. Class-selective extraction of polar, moderately polar, and nonpolar organics from hydrocarbon wastes using subcritical water. Environ Sci Technol, 31, 430–437.
    Zobel, H. F., 1988a. Molecules to granules - a comprehensive starch review. Starch, 40, 44-50.
    Zobel, H. F., 1988b. Starch crystal transformation and their industrial importance. Starch, 40, 1-7.

    QR CODE