簡易檢索 / 詳目顯示

研究生: Sitti Faika Ahsan
Sitti Faika Ahsan
論文名稱: 有抗氧化以及抗增殖功能之大雅蔥所含生物活性物質之鑑定
Identification of Bioactive Compounds in Bawang Dayak (Eleutherine palmifolia) as Anti-oxidation and Anti-proliferation Agent
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: Suryadi Ismadji
Suryadi Ismadji
Felycia Edi Soetardjo
Felycia Edi Soetardjo
Truong Chi Thanh
Truong Chi Thanh
Huynh Lien Huong
Huynh Lien Huong
Tran Nguyen Phuong Lan
Tran Nguyen Phuong Lan
Masahiro Muraoka
Masahiro Muraoka
王孟菊
Wang, Meng-Jiy
陳耀騰
Chern, Yaw-Terng
朱義旭
Ju, Yi-Hsu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 81
中文關鍵詞: 萃取大雅蔥酚化合物液相層析儀質譜儀抗癌抗氧化
外文關鍵詞: extract, bawang dayak, Eleutherin palmifolia, HPLC, mass spectrometry
相關次數: 點閱:232下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大雅蔥是一種印尼加里曼丹的原生植物。此植物所含之生物活性物質應該是它可以用來治療疾病之原因,然而到目前為止對此植物仍缺乏完全之了解。本研究之目的是在最佳狀態下得到此植物之萃取液,從此萃取液中分離並鑑定其中所含之生物活性物質。
    萃取是利用不同濃度之乙醇以及不同之萃取時間進行。得到粗萃取液後定量其總酚量、總黃酮量、自由基去除活性以及三價鐵離子還原活性。然後對此粗萃取液利用己烷、乙酸乙酯及丁純進行分率。結果發現乙酸乙酯及己烷分率分別有最高之總酚量及總黃酮量。
    具最高總酚量及還原活性之乙酸乙酯分率同時也有對子宮頸癌之最佳細胞凋亡活性,其次是己烷分率、丁醇分率及水分率。具最高總黃銅量及自由基去除活性之己烷分率被發現對乳癌細胞具有最高之抑制活性。本研究並利用高效液相層析儀串連電噴霧連質譜儀來鑑定萃取分率中之活性物質。結果分別在乙酸乙酯及己烷分率中鑑定出6及10種生物活性物質。


    Bawang dayak (Eleutherine palmifolia) is one of the native plants from Kalimantan, Indonesia. Phytochemicals of this plant was suspected for its effectiveness as antibacterial agent and for treating diseases such as cancer. There is still lack of comprehensive information for this plant especially in regards to its advantage for treating cancers. The aim of this study was to obtain the extracted fractions of BD bulb which demonstrate highest apoptosis activity in cervix and breast cancer cell lines. The structure of compounds was also identified and determined by using HPLC-MS/MS.
    Extraction process was performed in ethanol as solvent by varying ethanol concentrations and extraction times. The crude extract was fractionated using hexane, ethyl acetate and butanol. The results showed that extract fractions of ethyl acetate and hexane have the highest total phenolic contents (TPC) and total flavonoid contents (TFC), respectively. The extract fractions were then evaluated using DPPH for its radical scavenging activity and MTT assay for bioactivity identification.
    Hexane extract fraction with highest TFC and antioxidant activity also showed the highest apoptosis activity after being contacted with HeLa (cervix cancer cell) at 50 ppm for 72 h, followed by ethyl acetate and butanol extract fraction. Hexane fraction achieved IC50 value at 200 ppm after being contacted with MDA-MB-231 (breast cancer cell), whilst for ethyl acetate fraction was at 500 ppm.Determination of active compounds in extract fractions was conducted with high-performance liquid chromatography (HPLC) tandem with electrospray ionization mass spectrometer in negative and positive ions mode. Six compounds and ten compounds were identified in the ethyl acetate extract fraction and in the hexane extract fraction, respectively.

    RECOMMENDATION LETTER ……………………………………………… ii QUALIFICATION LETTER …………………………………………………... iii ABSTRACT IN CHINESE ……………………………………………………... iv ABSTRACT IN ENGLISH …………………………………………………….. v ACKNOWLEDGEMENT ……………………………………………………… vii TABLE OF CONTENTS …………………………………………………………. viii LIST OF TABLES ………………………………………………………………... x LIST OF FIGURES ………………………………………………………………. xi CHAPTER I INTRODUCTION 1.1 Research Background ………………………………………………… 1 1.2 Objectives ……………………………………………………………… 3 CHAPTER 2 LITERATURE REVIEW 2.1 Bawang Dayak (Eleutherine palmifolia) ……………………………...... 4 2.2 Polyphenol………………………………………..……………………...... 5 2.2.1 Flavonoid …………………………………………………………. 6 2.2.2 Napthalene derivates ……………………………………………… 7 2.3 Cancer …………………………………………………………………........ 8 2.4 Extraction process ……………………………………………………… 8 2.5 Chromatography ………………………………………………………......... 9 2.6 Identification ……………………………………………………………. 10 2.6.1 Evaluation antioxidant activity ……………………………………. 10 2.6.2 Free radical assay ………………………………………………….. 11 2.6.3 MTT assay ………………………………………………………… 12 2.6.4 High Performance Liquid Chromatgraphy (HPLC) ………………. 12 2.6.5 LC-ESI-Mass spectrophotometry …………………………………. 14 CHAPTER 3 EXPERIMENTAL SECTION 3.1. Material and Tools ……………………………………………………… 16 3.2. Instruments ……………………………………………………………... 17 3.3 Experimental Methods …………………………………………………... 18 3.3.1 Plant Material Preparation ………………………………………... 18 3.3.2 Extraction and Fractionation of Bioactive Compounds ……... 19 3.3.3 Total phenolic and total flavonoid assay ……………………. 20 3.3.4 Determination of free radical scavenging activity ………... 21 3.3.5 Reduction Power Assay …………………………………………... 21 3.3.6 Preparation of Cancer Cell Culture ……………………………. 22 3.3.7 Cell Viability by MTT Assay …………………………………….. 22 3.3.8 HPLC-ESI-MS Conditions ………………………………………. 23 3.3.9 Statistical analysis ………………………………………………… 24 CHAPTER 4 RESULTS AND DISCUSSION 4.1 Effect optimation, TFC,TPC and DPPH Bawang Dayak Extract……….. 25 4.2 Total phenolic , flavonoid and DPPH and reducing power assay of bawang dayak extract fractions……………………………………… 27 4.3 Bioactivity of Bawang Dayak extract toward cervix and breast cancer cells………………………………………………………… …………… 28 4.4 Identification of bioactive compounds using HPLC-ESI-MS…………… 37 CHAPTER 5 CONCLUSIONS …………………………………………………. 42 REFERENCE …………………………………………………………………… 43 APPENDIX A……………………………………………………………………. 52

    1. Databank, W.H.O.W. (2012). Health statistics and information systems. 1, 1.
    2. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., and Bray, F. (2015). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer 136, E359-386.
    3. Kim, Y.-M., Lambe, F.M., Soetikno, D., Wysong, M., Tergas, A.I., Rajbhandari, P., Ati, A., and Lu, E. (2013). Evaluation of a 5-year cervical cancer prevention project in Indonesia: Opportunities, issues, and challenges. Journal of Obstetric and Gynaecology Research 39, 1190-1199.
    4. Hecker, E. (1976). Definitions and terminology in cancer (tumour) etiology. Bulletin World Health Organization 54, 1-10.
    5. Chatterjee, S., and Fisher, A.B. (2005). Phytopharmaceuticals in Cancer Chemoprevention, , . In chapter 13. Free Radicals Oxidative Stress,and Cancer, P.D. Debasis Bagchi, FACN, CNS, MAIChE, ed. (2000 N.W. Corporate Blvd., Boca Raton, Florida 33431: CRC Press LLC), pp. 1-840.
    6. Devita, V.T., Hellman, S., and Rosenberg, S.A. (2001). Cancer: Principles and Practice of Oncology 6th Edition. (Lippincott Williams & Wilkins Publishers).
    7. Souza, B.F.d., Moraes, J.A.d., Inocenti, A., Santos, M.A.d., Silva, A.E.B.d.C., and Miasso, A.I. (2014). Women with breast cancer taking chemotherapy: depression symptoms and treatment adherence. Revista Latino-Americana de enfermagem 22, 866-873.
    8. Dai, J., and Mumper, R.J. (2010). Review: Plant phenolics: extraction, analysis and their antioxidant and anticancer properties Molecules 15, 7313-7352.
    9. Andersen, Ø.M., and Markham, K.R. (2006). FLAVONOIDS Chemistry, Biochemistry And Applications. Volume 1. (6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC Press Taylor & Francis Group), pp. 1-1212.
    10. Bloor, S.J. (2001). Overview of Methods for Analysis, Methods In Enzymology. Academic Press 335, 3-14.
    11. Grotewold, E. (2006). The Science of Flavonoids. Volume 1. (The Ohio State University Columbus, Ohio, USA: Springer ScienceBusiness Media, Inc), pp. 1-275.
    12. Tessele, P.B., Monache, F.D., Quintão, N.L.M., Silva, G.F.d., Rocha, L., Lucena, G.M.R.S., Ferreira, V.M.M., Prediger, R.D.S., and Filho, V.C. (2011). A new naphthoquinone isolated from the bulbs of cipura paludosa and pharmacological activity of two main constituents. Planta medica 77, 1035–1043.
    13. Ha, L.M., Huyen, D.T.T., Kiem, P.V., Minh, C.V., Van, N.T.H., Nhiem, N.X., Tai, B.H., Long, P.Q., Anh, B.K., Kim, S.H., et al. (2013). Chemical constituents of the rhizome of Eleutherine bulbosa and their inhibitory effect on the pro-Inflammatory cytokines production in lipopolysaccharide stimulated bone marrow-derived dendritic cells. Bulletin of the Korean Chemical Society 34, 633.
    14. Zhengxiong, C., Hulzhu, H., Chengrul, W., Yuhul, L., Jianmi, D., Sankawa, U., Noguchi, H., and Iitakac, Y. (1986). Hongconin, a new naphthalene derivative from Hong-Cong, the rhizome of Eleutherine americana MERR. et Heyne (Iridaeeae). Chemical and Pharmaceutical Bulletin 34, 2743-2746.
    15. Paramapojna, S., Ganzera, M., Gritsanapana, W., & Stuppner, H. (2008). Analysis of naphthoquinone derivatives in the Asian medicinal plant Eleutherine americana by RP-HPLC and LC–MS. Journal of Pharmaceutical and Biomedical Analysis 47, 990-993.
    16. Nazeama, J.A., Gad, H.A., El-Hefnawy, H.M., and Singab, A.-N.B. (2017). Chromatographic separation and detection methods of Aloe arborescens Miller constituents: A systematic review. Journal of Chromatography B 1058, 57-67.
    17. Kazakevich, Y. (2007). Hplc for Pharmaceutical Scientists. Y. Kazakevich and R. Lobrutto, eds. (Hoboken, New Jersey: Wiley-Interscience A John Wiley & Sons, Inc., Publication).
    18. Nath, S., Saha, P.S., and Jha, S. (2014). Bulbous plants biotechnology. In Medicinal Bulbous Plants: Biology, Phytochemistry and Biotechnology, Volume 1, K.G. Ramawat and J.M. Mérillon, eds. (6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC Press Taylor & Francis Group), pp. 338-369.
    19. Tillichv, H.-J. (2003). Seedling morphology in Iridaceae: Indications for relationships within the family and to related families. Flora 198, 220-242.
    20. Merrill, E.D. (1912). Iridaceae, Eleutherine Palmifolia Merr. Philippine Journal of Science C7, 233.
    21. Y, R., L, A., T, O., D, N., N, B., P, K., T, B., R.E, D., W, D., A, D.W., et al. (2017). Catalogue of Life, 30th January 2017 "Species Details : Sisyrinchium palmifolium L.". World Checklist of Selected Plant Families
    22. Feng, Q., Zhong, X.J., Juan, D.W., Gexia, Q., NaiL, W., and Sheng, Y.X. (2005). New constituents from Eleutherine americana. Chemical Journal Of Chinese Universities 26, 2057-2060.
    23. Ifesan, B.O.T., Hamtasin, C., Mahabusarakam, W., & Voravuthikunchai, S,P. (2008). Inhibitory effect of Eleutherine Americana Merr. extract on Staphylococcus aureus isolated from food. Journal of Food Science 74, M31-M36.
    24. Mahabusarakam, W., Hemtasin, C., Chakthong, S., Voravuthikunchai, S.P., and Olawumi, I.B. (2010). Naphthoquinones, Anthraquinones and Naphthalene Derivatives from the Bulbs of Eleutherine americana. Planta Medica 76, 345-349.
    25. Valadeaua, C., Castillo, J.A., Sauvainc, M., Lores, A.F., and Bourdyc, G. (2010). The rainbow hurts my skin: Medicinal concepts and plants uses among the Yanesha (Amuesha), an Amazonian Peruvian ethnic group. Journal of Ethnopharmacology 127, 175–192.
    26. Subramaniam, K., Suriyamoorthy, S., Wahab, F., Sharon, F.B., and Rex, G.R. (2012). Antagonistic activity of Eleutherine palmifolia Linn. Asian Pacific Journal of Tropical Disease 2, S491-S493.
    27. Li, X., Koyano, T., Kowithayakorn, T., and Ishibashi, M. (2009). New Wnt/beta-catenin signaling inhibitors isolated from Eleutherine palmifolia. Chem Asian J 4, 540-547.
    28. Alves, T.M.A., Kloos, H., and Zani, C.L. (2003). Eleutherinone, a novel fungitoxic Naphthoquinone from Eleutherine bulbosa (Iridaceae). Memórias do Instituto Oswaldo Cruz 98, 709-712.
    29. Ignat, I., Volf, I., and Popa, V.I. (2011). Review: A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry 126, 1821–1835.
    30. Mayer, A.M. (2006). Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry 67, 2318–2331.
    31. Heim, K.E., Tagliaferro, A.R., and Bobilya, D.J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry 13, 572–584.
    32. Sakakibara, H., Honda, Y., Nakagawa, S., Ashida, H., and Kanazawa, K. (2003). Simultaneous determination of all polyphenols in vegetables, fruits, and teas. Journal of Agricultural and Food Chemistry 51, 571−581.
    33. Amic, D., Davidovic-Amic, D., Beslo, D., and Trinajstic, N. (2003). Structure radical scavenging activity relationships of flavonoids. Croatica Chemica Acta 76, 55-61.
    34. Martin, D.A., and Bolling, B.W. (2015). A review of the efficacy of dietary polyphenols in experimental models of inflammatory bowel diseases. Food & Function 6, 1773–1786.
    35. Scalbert, A., Johnson, I.T., and Saltmarsh, M. (2005). Polyphenols: antioxidants and beyond. The American Journal of Clinical nutrition 81(suppl), 215S–217S.
    36. Harborne, J.B. (1988). The Flavonoids Advances In Research Since 1980. Springer-Seience-Business Media, B.V. 2, 1-630.
    37. Packer, L. Methods in Enzymology on Flavonoids and Other Polyphenols. Volume 1, G. Beecher, E. Cadenas, J. Cillard, F. Ursini, M. Gross, B. Halliwell, W. Pryor, C. Rice-Evans and H. Sies, eds. (University of California: Academic Press), p. 482.
    38. Jannie P.J. Marais, Bettina Deavours, Richard A. Dixon, and Ferreira, D. (2006). The Stereochemistry Of Flavonoids. In The Science of Flavonoids, Volume 1, E. Grotewold, ed. (The Ohio State University Columbus, Ohio, USA: Springer ScienceBusiness Media, Inc.), p. 2.
    39. Prior, R.L. (2015). Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits. journal of Functional Foods 18, 797–810.
    40. Dewick, P.M. (2002). Medicinal Natural Products A Biosynthetic Approach. Volume 2nd ed. (Baffins Lane, Chichester, West Sussex, PO19 1UD, England: John Wiley & Sons, Ltd), p. 487.
    41. Niki, E., Yoshida, Y., Saito, Y., and Noguchi, N. (2005). Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochemical and Biophysical Research Communications 338, 668–676.
    42. Roleira, F.M.F., Tavares-da-Silva, E. J., Varela, C.L., Costa, S.C., Silva, T., Garrido, J.,& Borges, F. (2015). Review: Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chemistry 183, 235–258.
    43. Huang, D., Ou, B., and Prior, R.L. (2005). The Chemistry behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry 53, 1841−1856.
    44. A.Williams, C., B.Harborne, J., and Goldblatt, P. (1986). Correlations between phenolic patterns and tribal classification in the family iridaceae. Phytochemistry 25, 2135-2154.
    45. Singab, A.N.B., Ayoub, I.M., El-Shazly, M., Korinek, M., Wu, T.-Y., Cheng, Y.-B., Chang, F.-R., and Wu, Y.-C. (2016). Shedding the light on Iridaceae: Ethnobotany, phytochemistry and biological activity. Industrial Crops and Products 92, 308-335.
    46. Jeon, S.-Y., Hwang, K.-A., and Choi, K.-C. (2016). Review: Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. Journal of Steroid Biochemistry & Molecular Biology 158, 1-8.
    47. Cragg, G.M., Grothaus, P.G., and Newman, D.J. (2009). Impact of natural products on developing new anti-cancer Agents. Chemical Reviews, 109, 3012–3043.
    48. Hollestelle, A., Baan, F.H.v.d., Berchuck, A., Johnatty, S.E., Abene, K.K., Agnarsson, B.A., Aittomäki, K., Alducci, E., Andrulis, I.L., Anton-Culver, H., et al. (2016). Review: No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology 141, 386–401.
    49. Mille, J.W., Royalty, J., Henley, J., White, A., and Richardson, L.C. (2015). Breast and cervical cancers diagnosed and stage at diagnosis among women served through the national breast and cervical cancer early detection program. Cancer Causes Control 26, 741-747.
    50. Archived, N.C.I. ( february 8th,2015). Defining Cancer.
    51. Macdonald, F., Ford, C., and Casson, A. (2004). Molecular Biology of Cancer (Advanced Texts), Volume 2 edition (London Taylor & Francis).
    52. Naczk, M., and Shahidi, F. (2004). Review: Extraction and analysis of phenolics in food. Journal of Chromatography A 1054, 95–111.
    53. Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Jahurul, M.H.A., Ghafoor, K., Norulaini, N.A.N., and Omar, A.K.M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering 117, 426–436.
    54. Sun, T., and Ho, C.-T. (2005). Antioxidant activities of buckwheat extracts. Food Chemistry 90, 743-749.
    55. Turkmen, N., Sari, F., and Velioglu, Y.S. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chemistry 99, 835–841.
    56. Mackela, I., Andriekus, T., and Venskutonis, P.R. (2017). Biorefining of buckwheat (Fagopyrum esculentum) hulls by using supercritical fluid, Soxhlet, pressurized liquid and enzyme-assisted extraction methods. Journal of Food Engineering 2133, 38-46.
    57. Mandal, S.C., Mandal, V., and Das, A.K. (2015). Essentials of Botanical Extraction S.D. Sarker and R. Verpoorte, eds. (Academic Press is an imprint of Elsevier).
    58. Stock, R., and Rice, C.B.F. (1978). Chromatography Methods, 3 th Edition, (Norwich Chapman and Hall and Science paperbacks).
    59. Braun, T., and Ghersini, G. (1975). Extraction Chromatography. In Journal of Chromatography Library, Volume 2, E.K. Kiillay, ed. (New York: Elsevier Scientific Publishing Company), p. 585.
    60. Skoog, D.A., Holler, F.J., and Crouch, S.R. (2006). Principles of Instrumental Analysis, 6th Edition Volume 28, 6th Edition, (Canada: David Harris).
    61. Chen, C., Wang, L., Luo, R.W.X., Li, Y., Li, J., Li, Y., and Chen, Z. (2018). Phenolic contents, cellular antioxidant activity and antiproliferative capacity of different varieties of oats. Food Chemistry 239 260–267.
    62. Everette, J.D., Bryant, Q.M., Green, A.M., Abbey, Y.A., Wangila, G.W., and Walker, R.B. (2010). Thorough Study of Reactivity of Various Compound Classes toward the Folin-Ciocalteu Reagent. Journal of Agricultural and Food Chemistry 58, 8139–8144.
    63. Sanchez-Rangel, J.C., Benavides, J., Heredia, J.B., CisnerosZevallos, L., and Jacobo-Velazquez, D.A. (2013). The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods 5, 5990–5999.
    64. Pallab, K., K, B.T., K, P.T., and Ramen, K. (2013). Estimation of total flavonoids content (TFC) and anti oxidant activities of methanolic whole plant extract of Biophytum Sensitivum Linn. Journal of Drug Delivery & Therapeutics 3, 33-37.
    65. Musa, K.H., Abdullah, A., Kuswandi, B., and Hidayat, M.A. (2013). A novel high throughput method based on the DPPH dry reagent array for determination of antioxidant activity. Food Chemistry 141, 4102-4106.
    66. Makoto, O. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Japan Journal Nutrition 44, 307-315.
    67. Alam, M.N., Bristi, N.J., and Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal 21, 143–152.
    68. Schaich, K.M., Tian, X., and Xie, J. (2015). Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. journal of functional foods 14 111–125.
    69. LI, W., ZHOU, J., and XU, Y. (2015). Study of the in vitro cytotoxicity testing of medical devices (Review). Biomedical Reports 3, 617-620.
    70. Stockerta, J.C., Blázquez-Castroa, A., Ca˜nete, M., Horobin, R.W., and Villanueva, Á. (2012). MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochemica 114, 785-795.
    71. Liu, X., Zhang, F., Rodeheaver, D., Wright, A., Tolliver, C., Walker, J., and Rose, R. (2017). Development of a quantitative cytotoxicity assay using mouse lymphoma TK cells. Toxicology in Vitro 45, 172-180.
    72. Cárdenasa, A.V.C., Hernández, L.R., Juárez, Z.N., Sánchez-Arreola, E., and Bacha, H. (2016). Antimicrobial, cytotoxic, and anti-inflammatory activities of Pleopeltis polylepis. Journal of Ethnopharmacology 194, 981-986.
    73. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of lmmunological Methods 65, 55-63.
    74. Fotakis, G., and Timbrell, J.A. (2005). In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters 160, 171-177.
    75. Lobner, D. (2000). Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis? Journal of Neuroscience Methods 96, 147-152.
    76. R.Snyder, L., Kirkland, J.J., and Glajch, J.L. (1997). Practical HPLC Method Development, Volume second edition, (Canada: John Wiley & Sons Inc).
    77. Rijke, E.d., Out, P., Niessen, W.M.A., Ariese, F., Gooijer, C., and Brinkman, U.A.T. (2006). Review: Analytical separation and detection methods for flavonoids. Journal of Chromatography A 1112, 31-63.
    78. Sahu, P.K., Ramisetti, N.R., Cecchi, T., Swain, S., Patro, C.S., and Panda, J. (2018). Review : An overview of experimental designs in HPLC method development and validation. Journal of Pharmaceutical and Biomedical Analysis 147, 590-611.
    79. Prathapa, B., Dey, A., rao, G.H.S., Johnsona, P., and Arthanariswaran, P. (2013). A Review : Importance of RP-HPLC in analytical method development International Journal Of Novel Trends In Pharmaceutical Sciences 3, 15-23.
    80. Uwe D. Neue, Y.-F.C., and Ziling Lu (2006). HPLC Made to Measure: A Practical Handbook for Optimization. In Fast Gradient Separations, second Edition, S. Kromidas, ed. ( Weinheim: Wiley-VCH VERLAG GMBH & CO. KGAA).
    81. Alu’datt, M.H., Rababah, T., Alhamad, M.N., Alodat, M.d., Al-Mahasneh, M.A., Gammoh, S., Ereifej, K., Almajwal, A., and Kubow, S. (2017). Molecular characterization and bio-functional property determination using SDS-PAGE and RP-HPLC of protein fractions from two Nigella species. Food Chemistry 230, 125-134.
    82. Belanger, J.M.R., Pare, J.R.J., and Sigouin, M. (1997). Techniques and Instrumentation in Analytical Chemistry, Volume 18, second Edition, (Canada: Elsevier Science B.V. All rights reserved).
    83. Pavia, D.L., Lampman, G.M., Kriz, G.S., and Vyvyan, J.R. (2015). Introduction to Spectroscopy, Volume fifth edition, (United State Of America Cengage Learning).
    84. Silverstein, R.M., Webster, F.X., kiemle, D.J., and Bryce, D.L. (2015). Spectrometric Identification of Organic compounds, Volume eighth edition, (new york: Wiley).
    85. Kruve, A., Herodes, K., and Leito, I. (2010). Optimization of electrospray interface and quadrupole ion trap mass spectrometer parameters in pesticide liquid chromatography/electrospray ionization mass spectrometry analysis. Rapid Communications In Mass Spectrometry 24, 919–926.
    86. Wu, A.H.B., and French, D. (2013). Implementation of liquid chromatography/mass spectrometry into the clinical laboratory. Clinica Chimica Acta 420, 4-10.
    87. Malik, A.K., Blasco, C., and Picó, Y. (2010). Liquid chromatography–mass spectrometry in food safety. Journal of Chromatography A 1217, 4018-4040.
    88. Kruve, A., Rebane, R., Kipper, K., Oldekop, M.-L., Evard, H., Herodes, K., Ravio, P., and Leito, I. (2015). Tutorial review on validation of liquid chromatography–mass spectrometry methods: Part I. Analytica Chimica Acta 870, 29-44.
    89. Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y., and Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products 44, 566–571.
    90. Apostolidis, E., Karayannakidis, P.D., Kwon, Y.-I., Lee, C.M., and Seeram, N.P. (2011). Seasonal variation of phenolic antioxidant-mediated α-glucosidase inhibition of Ascophyllum nodosum. Plant Foods for Human Nutrition 66, 313–319.
    91. Paramapojn, S., Ganzera, M., Gritsanapan, W., and Stuppner, H. (2008). Analysis of naphthoquinone derivatives in the Asian medicinal plant Eleutherine americana by RP-HPLC and LC–MS. Journal of Pharmaceutical and Biomedical Analysis 47, 990-993.
    92. Li, X., Ohtsuki, T., Koyano, T., Kowithayakorn, T., and Ishibashi, M. (2009). New Wnt/b -Catenin signaling inhibitors isolated from Eleutherine palmifolia. Chemistry – An Asian Journal 4, 540 – 547.
    93. Deshpande, P.P., Price, K.N., and Baker, D.C. (1995). Concerning the absolute stereochemistry of Hongconin. Bioorganic & Medicinal Chemistry Letters 5, pp. 1059-1060.
    94. Aboshora, W., Lianfu, Z., Dahir, M., Qingran, M., Qingrui, S., Jing, L., Al-Haj, N.Q.M., and Ammar, A.-F. (2014). Effect of extraction method and solvent power on polyphenol and flavonoid levels in Hyphaene Thebaica L Mart (Arecaceae) (Doum) Fruit, and its antioxidant and antibacterial Activities. Tropical Journal of Pharmaceutical Research 13, 2057-2063.
    95. Anwar, F., and Przybylski, R. (2012). Effect of solvents extraction on total phenolics and antioxidant activity of extracts from flaxseed (Linum usitatissimum L.). Acta Scientiarum Polonorum Technologia Alimentaria 11, 293-301.
    96. Spigno, G., Tramelli, L., and Faveri, D.M.D. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering 81, 200–208.
    97. Yeo, C.-R., Yong, J.-J., and Popovich, D.G. (2017). Isolation and characterization of bioactive polyacetylenes Panaxginseng Meyer roots. Journal of Pharmaceutical and Biomedical Analysis 139, 148-155.
    98. Tomsone, L., Kruma, Z., and Galoburda, R. (2012). Comparison of different solvents and extraction methods for isolation of phenolic compounds from horseradish roots (Armoracia rusticana). World Academy of Science, Engineering and Technology 6, 903-908.
    99. Mokrani, A., and Madani, K. (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Separation and Purification Technology 162, 68-76.
    100. Chirinos, R., Rogez, H., Campos, D., Pedreschi, R., and Larondelle, Y. (2007). Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Separation and Purification Technology 55, 217-225.
    101. Chew, K.K., Ng, S.Y., Thoo, Y.Y., Khoo, M.Z., Wan Aida, W.M., and Ho, C.W. (2011). Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Centella asiatica extracts. International Food Research Journal 18, 571-578.
    102. Sun, C.l., Wu, Z.s., Wang, Z., and Zhang, H.c. (2015). Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of beijing propolis extracts. Evidence Based Complementary and Alternative Medicine 2015, 9.
    103. Oroian, M., and Escriche, I. (2015). Review: Antioxidants: Characterization, natural sources, extraction and analysis. Food Research International 74, 10-36.
    104. Yu, O.J., Liao, Z.X., Lei, J.C., and Hu, X.M. (2007). Antioxidant and cytotoxic activities of various fractions of ethanol extract of Dianthus superbus. Food Chemistry 104, 1215-1219.
    105. Vats, S. (2012). Antioxidant activity of callus culture of Vigna unguiculata (L.) Walp. Journal Researcher 4, 22-24.
    106. Cheng, X., Xiao, Y., Wang, X., Pan Wang, H.L., Yan, H., and Liu, Q. (2012). Anti-tumor and pro-apoptotic activity of ethanolic extract and its various fractions from Polytrichum commune L.ex Hedw in L1210 cells. Journal of Ethnopharmacology 143, 49-56.
    107. Fitri, Y., Rosidah, and Suwarso, E. (2014). Effects of inhibition cell cycle and apoptosis of sabrang onion extract (Eleutherine bulbosa (Mill.) Urb.) on breast cancer cells. International Journal of Pharmtech Research 6, pp 1392-1396.
    108. U.T, B., and I, S. (1999). Oxidative stress, growth factor starvation and Fas activation may all cause apoptosis through lysosomal leak. Redox Report 4, 3-11.
    109. Seeni, A., Zulkepli, N.A., and Wahab, R.A. (2012). Novel apoptotic regulators in carcinogenesis. In Apoptosis inducer from Streblus asper Extracts for cancer chemoprevention, Volume 1, G.G. Chen and P.B.S. Lai, eds. (New york: Springer), p. 305.
    110. Duval, J., Pecher, V., Poujol, M., and Lesellier, E. (2016). Research advances for the extraction, analysis and uses of anthraquinones: A review. Industrial Crops and Products 94, 812–833.
    111. Jinzhong, X., Feng, Q., Wenjuan, D., Gexia, Q., Naili, W., and Xinsheng, Y. (2006). New bioactive constituents from eleutherine americana Frontiers of Chemistry in China 3.
    112. Adriana, C., Débora, B.V.-C., Giovanna, F.F., Ana, L.T.G.R., João, E.d.C., Greice, M.R.d.S., Franco, D.-M., and Valdir, C.F. (2016). Antiproliferative effect of extracts and pyranonaphthoquinones obtained from Cipura paludosa bulbs. Pharmaceutical Biology 54, 1022-1026.
    113. Masami, I., Xiaofan, L., Takashi, O., and Takashi, K. (2009). Eleutherinoside A, B and C. (Japan: Chiba University).
    114. Jinzhong, X., Feng, Q., Gexia, Q., Naili, W., and Xinsheng, Y. (2005). Studies on the antifungal constituents isolated from Eleutherine americana. Chinese Journal of Medicinal Chemistry 16, 157-161.

    QR CODE