簡易檢索 / 詳目顯示

研究生: 陳品儒
Pin-Ju Chen
論文名稱: 成衣業訂單分碼規劃之啟發式演算法
Heuristic algorithm for Cut Order Planning in Apparel Industry
指導教授: 曹譽鐘
Yu-Chung Tsao
口試委員: 郭伯勳
Po-Hsun Kuo
王孔政
Kung-Jeng Wang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 38
中文關鍵詞: 訂單分碼規劃成衣業基因演算法生物組織搜尋混和演算法
外文關鍵詞: hybrid approach algorithm, One-by-One heuristic
相關次數: 點閱:176下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在當前競爭強烈的市場中,紡織業者需要在兼顧提供多樣化產品及快速生產的同時,盡可能的降低成本的支出;在多項支出成本之中,原物料的成本佔總生產花費的大宗,若可以有效地降低布料的浪費,將對於降低生產成本有顯著的幫助。為求布料使用效率最大化,訂單分碼規劃(COP)被視為紡織業製程之中關鍵的一環,此流程將依照客戶訂單以及馬克排版結果進行排版,若能夠將不同尺寸大小的模板進行妥善的安排,並且在最短的時間內獲得最佳解,將對紡織業有極大的益處。
由於訂單分碼規劃在求解上屬於NP-hard問題,當問題規模增加時,求解難度也會隨之急遽的增加,故幾乎難以透過窮舉法來尋找最佳解。本文提供一個新的一對一演算法與生物組織搜尋演算法(SOS)、基因遺傳演算法(GA)、混和演算法、切割搜尋演算法進行求解及比較。根據測試結果顯示,本研究所使用之一對一演算法能夠顯著的改善求解效率,並且針對極端訂單需求也能夠有良好的求解結果。


With the current competitive and aggressive market, the apparel industry needs to consider the provision of diversified products and rapid production, while reducing costs as much as possible. Among the multiple expenditure costs, the cost of raw materials accounts for a large proportion of the total production costs. If we can effectively reduce the wastage of cotton material used, will significantly help reduce the production costs. To maximize the efficiency of cloth used, cut order planning (COP) is regarded as a key part of the apparel industry process. This process will be based on customer orders and mark planning results. If different size templates can be properly processed and find the optimal solution in the shortest time will be of great benefit to the apparel industry.
Since cut order planning (COP) is an NP-hard problem, when the problem scale increases, the difficulty of finding a solution will increase sharply, so it is almost difficult to find the best solution through h exhaustive method. This paper provides a new approach called the One-by-One heuristic. And using this approach to compare with symbiotic organism search algorithm (SOS)、genetic algorithm (GA)、hybrid approach、Divide-and-Search heuristic. According to the test results, the One-by-One heuristic can significantly improve the solution efficiency cy, also can find the optimal solution for extreme demands

摘要 I ABSTRACT II ACKNOWLEDGEMENT III CONTENTS IV CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Research Objective 2 1.3 Research Organization 2 CHAPTER 2 LITERATURE REVIEW 4 2.1 Cut order planning(COP) 4 2.2 Symbiotic Organism Search(SOS) 5 CHAPTER 3 MODEL FORMULATION 7 3.1 Problem definition 7 3.2 Hybrid approach algorithm 9 3.2.1 Conventional heuristic 10 3.2.2 Genetic algorithm 12 3.3 Symbiotic Organism Search 12 3.3.1 Mutualism phase 14 3.3.2 Commensalism phase 14 3.3.3 Parasitism phase 14 3.4 Divide-and-Search heuristic 15 3.5.1 Divide phase 16 3.5.2 Searching phase 16 3.5 One-by-One heuristic 17 CHAPTER 4 NUMERICAL STUDY 21 4.1 Experiment result 21 4.1.1 Small batch 22 4.1.2 Median batch 22 4.1.3 Large batch 23 4.1.4 Extremely large batch 23 4.1.5 Mixed batch 24 4.2 Comparison of the experiment results 24 CHAPTER 5 CONCLUSION 26 5.1 Conclusion 26 5.2 Future Research 26 REFERENCE 28

Abdullahi, M., & Ngadi, M. A. (2016). Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment. PLoS One, 11(6), e0158229. doi:10.1371/journal.pone.0158229
Abeysooriya, R., & Fernando, T. (2012). Hybrid approach to optimize cut order plan solutions in apparel manufacturing. Int J Inf Technol Commun Res, 2.
Çelik, E. (2020). A powerful variant of symbiotic organisms search algorithm for global optimization. Engineering Applications of Artificial Intelligence, 87. doi:10.1016/j.engappai.2019.103294
Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112. doi:10.1016/j.compstruc.2014.03.007
Cheng, M.-Y., Prayogo, D., & Tran, D.-H. (2016). Optimizing Multiple-Resources Leveling in Multiple Projects Using Discrete Symbiotic Organisms Search. Journal of Computing in Civil Engineering, 30(3). doi:10.1061/(asce)cp.1943-5487.0000512
Degraeve, Z., Gochet, W., & Jans, R. (2002). Alternative formulations for a layout problem in the fashion industry. European Journal of Operational Research, 143(1), 80-93.
Degraeve, Z., & Vandebroek, M. (1998). A Mixed Integer Programming Model for Solving a Layout Problem in the Fashion Industry. Management Science, 44(3), 301-310. doi:10.1287/mnsc.44.3.301
Ezugwu, A. E., & Prayogo, D. (2019). Symbiotic organisms search algorithm: Theory, recent advances and applications. Expert Systems with Applications, 119, 184-209. doi:10.1016/j.eswa.2018.10.045
Hifi, M., & M'Hallah, R. (2003). A hybrid algorithm for the two‐dimensional layout problem: the cases of regular and irregular shapes. International Transactions in Operational Research, 10(3), 195-216.
Jacobs-Blecha, C., Ammons, J. C., Schutte, A., & Smith, T. (1997). Cut order planning for apparel manufacturing. IIE transactions, 30(1), 79-90.
M'Hallah, R., & Bouziri, A. (2016). Heuristics for the combined cut order planning two-dimensional layout problem in the apparel industry. International Transactions in Operational Research, 23(1-2), 321-353. doi:10.1111/itor.12104
Martens, J. (2004). Two genetic algorithms to solve a layout problem in the fashion industry. European Journal of Operational Research, 154(1), 304-322. doi:10.1016/s0377-2217(02)00706-3
Nama, S., Saha, A. K., & Ghosh, S. (2016). Improved symbiotic organisms search algorithm for solving unconstrained function optimization. Decision Science Letters, 361-380. doi:10.5267/j.dsl.2016.2.004
Nascimento, D. B., Neiva de Figueiredo, J., Mayerle, S. F., Nascimento, P. R., & Casali, R. M. (2010). A state-space solution search method for apparel industry spreading and cutting. International Journal of Production Economics, 128(1), 379-392. doi:10.1016/j.ijpe.2010.07.035
Panda, A., & Pani, S. (2016). A Symbiotic Organisms Search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Applied Soft Computing, 46, 344-360. doi:10.1016/j.asoc.2016.04.030
Patel, V. K., Savsani, V. J., & Tejani, G. G. (2016). Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. Journal of Computational Design and Engineering, 3(3), 226-249. doi:10.1016/j.jcde.2016.02.003
Puasakul, K., & Chaovalitwongse, P. (2013). The development of heuristic for solving multi objective mark planning problem in garment industry. Paper presented at the 2013 IEEE International Conference on Industrial Engineering and Engineering Management.
Rose, D. M., & Shier, D. R. (2007). Cut scheduling in the apparel industry. Computers & Operations Research, 34(11), 3209-3228. doi:10.1016/j.cor.2005.12.001
Sönmez, Y., & Unal, M. (2019). Estimation of Smooth and Non-smooth Fuel Cost Function Parameters Using Improved Symbiotic Organisms Search Algorithm. Journal of Electrical Engineering & Technology, 15(1), 13-25. doi:10.1007/s42835-019-00291-x
Wong, W. K., & Leung, S. Y. S. (2008). Genetic optimization of fabric utilization in apparel manufacturing. International Journal of Production Economics, 114(1), 376-387. doi:10.1016/j.ijpe.2008.02.012
Xu, Y., Thomassey, S., & Zeng, X. (2020). Optimization of garment sizing and cutting order planning in the context of mass customization. The International Journal of Advanced Manufacturing Technology, 106(7-8), 3485-3503. doi:10.1007/s00170-019-04866-w
周虎, 趙辉, 李牧東, & 蔡雅偉. (2016). 多策略自適應共生生物搜索算法. 空軍工程大學學報 (自然科學版), 17(4).

無法下載圖示
全文公開日期 2032/07/29 (校外網路)
全文公開日期 2032/07/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE