簡易檢索 / 詳目顯示

研究生: 林忠毅
Chung-yi Lin
論文名稱: 撓性機械手臂之動態建模分析與控制系統設計
Dynamic Modeling and Controller Design of a Flexible Manipulator system
指導教授: 郭中豐
Chung-feng Jeffrey Kuo
口試委員: 張嘉德
Chia-de Chang
黃昌群
Chang-chiun Huang
江茂雄
Mao-hsiung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 84
中文關鍵詞: 撓性機械手臂漢米頓原理假設模態法PD控制器速度回饋基因演算法
外文關鍵詞: Flexible manipulator, Hamilton’s principle, Assumed-mode method, PD controller, Velocity feedback, Genetic Algorithm
相關次數: 點閱:290下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文係在對撓性機械手臂分散式參數系統作動態分析與控制系統設計之研究,探討撓性機械手臂系統的穩定性分析與定位控制。即對撓性機械手臂的撓性問題做深入的探討,首著於撓性機械手臂之振動抑制下設計控制器,除須控制其剛體模態,而且必須抑制其撓性模態之振動行為,以期達到精確的軌跡控制。
    首先以漢米頓原理(Hamilton’s principle)推導系統運動方程式來建立模型,經拉普拉斯轉換(Laplace transformation)以求出撓性機械手臂之受控系統轉移函數,得出系統精確之極零點位置,在據以根軌跡法分析選擇控制器設計。然後利用假設模態法(Assumed-mode method)對撓性機械手臂作模態分析,將偏微分方程式化成無窮多個振動模態之聯立二階常微分方程式,可將連續系統以無窮多個單自由度系統組合,並轉換成狀態空間表示式,方便於撓性機械手臂系統之動態模擬分析與控制系統設計。分析自然頻率方程式所得之自然頻率與極點位置相對照,驗證所取模態數以構成撓性機械手臂系統模擬上之精確性。最後結果顯示,藉由實用的PD控制器與速度回饋設計即可使閉迴路系統穩定,並結合基因演算法於控制器參數之調整,引入誤差準則的概念訂定適應函數,能更有效率地搜尋控制器參數,避免以試誤法的方式需要較多的嘗試時間,並有利於排除陷入到參數局部最佳值的問題。


    In order to meet the requirements for higher productivity and efficiency, the trend toward using faster, lighter and more accurate manipulators in industrial and space application are apparent. Many control system design methods for a flexible manipulator are either based on reduced order model or require distributed actuators, which are not available in reality. This thesis is concerned with some topics in the dynamic modeling and control of a flexible manipulator system with infinite dimensional system. First, Hamilton’s principle is used to derive the equations of motion and boundary conditions of the flexible manipulator arm. Then, the system transcendental transfer function is obtained from the actuator and sensor’s locations. The extended root-locus is used to analyze the exact infinite dimensional pole and zero positions. Next, in order to simulate this distributed parameter system, the Assumed-mode method is adopted and its accuracy is proved in advance. Because the control design and the computer simulation are based on the concept of the infinite dimensional system, there will not “control and observation spillover problems” happen and computational error concern which are encountered in most of the control of flexible structures. In this thesis, by using a discrete set of actuator and sensor without involving truncation of the higher frequency modes, it can be seen from computer simulation, the designed PD and velocity feedback control system for flexible manipulator arm can not only stabilize all the vibration modes but also can provide good tracking properties.

    摘要 I Abstract II 誌謝 III 目錄 V 圖表索引 VIII 第1章 緒論 1 1.1. 前言 1 1.2. 研究動機與目的 1 1.3. 文獻回顧 2 1.4. 研究流程 6 1.5. 本文大綱 7 第2章 撓性機械手臂之數學模式推導 8 2.1. 撓性機械手臂之模型架構 8 2.2. 撓性機械手臂之運動方程式推導 11 2.3. 撓性機械手臂之自然頻率和特徵函數 13 2.4. 撓性機械手臂之轉移函數 20 2.5. 控制系統模擬的模態與狀態空間模型 25 第3章 系統分析與控制器設計 31 3.1. 系統穩定性分析 31 3.1.1. 理論推導 31 3.1.2. 根軌跡穩定分析法 35 3.2. 系統根軌跡圖探討 36 3.3. PD控制器設計 37 3.4. Phase-lead補償器設計 42 3.5. 速度回饋補償 46 3.6. 結合基因演算法選擇控制器參數 48 3.6.1. 基因演算法的基本理論 48 3.6.2. 基因演算法之參數設定 49 3.6.3. 基因演算法之演算步驟 52 3.6.4. 適應函數的選擇 55 第4章 數值模擬分析 58 4.1. 受控系統與參考輸入軌跡之追蹤 58 4.1.1. 受控系統 58 4.1.2. 響應軌跡之追蹤 58 4.2. 以第一模態主極點之設計與模擬結果 60 4.2.1. PD控制器設計 60 4.2.2. Phase-lead補償器設計 61 4.3. 速度回饋補償 65 4.4. 結合基因演算法設計PD控制器 67 4.5. 撓性機械手臂運動過程中之振動變形量 71 第5章 結論與未來研究方向 75 5.1. 結論 75 5.2. 未來研究方向 77 參考文獻 78 附錄 82 作者簡介 84

    [1] B. S. Chen and T. Y. Yang, “Robust Optimal Model Matching Control Design for Flexible Manipulators”, ASME Journal Dynamic System, Measurement and Control, Vo1. 115, pp. 173-178, 1993.
    [2] B. Wie and A. E. Bryson , “Modeling and Control of Flexible Space Structures”, In Proceedings of VPI and SU/AIAA Symposium on the Dynamics and Control of Large Flexible Spacecraft, pp. 153-174, 1981.
    [3] C.F. Kuo and C.Y. Kuo, “Modeling and Simulation of Nonlinear Dynamic in a Flexible Robot Arm”, Active Control of Noise and Vibration ASME, Vol. 38, pp. 149-156, 1992.
    [4] C. Y. Kuo and C. C. Huang, “Active Control of Mechanical Vibrations in a Circular Disk”, ASME Journal of Dynamic System, Measurement and Control, Vol. 114, pp. 104-112, 1993.
    [5] S. Cetlinkunt and W. L. Yu, “Closed-Loop Behavior of a Feedback-Controlled Flexible Arm: A Comparative Study”, Int. J. Robotics Research, Vol. 10, No. 3, pp. 263-275, 1991.
    [6] E. Barbieri, “Single-Input / Single-Output Transfer Function for a Flexible Slewing Link”, Journal of Robotic Systems, Vol. 10, No. 7, pp. 913-929, 1993.
    [7] E. Schmitz, “Experiment on the End-Point Position Control of a very Flexible One-Link Mipulator”, the Ph.D., Thesis in Stanford University ,Guidance and Control Laboratory, 1985.
    [8] G. F. Franklin, J. D. Powell and E. N. Abbas, “Feedback Control of Dynamic System”, Third Edition, Addison Wesley, 1994.
    [9] G. G. Hastings and W. J. Book, “Verification of a Linear Dynamic Model for Flexible Robotic Manipulators”, IEEE International Conference on Robotics and Automation, pp. 1024-1029, 1986.
    [10] G. Hohenbichler, P. Plockinger and P. Lugner, “Comparision of a Modal-Expansion and a Finite Element-Model for a Two-Beam Flexible Robot Arm”, IFAC. Robot Control, pp35-39, 1989.
    [11] G. D. Martin, “On the Control of Flexible Mechanical System”, Ph. D. dissertation, Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, SUDARR 511, 1978.
    [12] H. Kanoh and H. G. Lee, “Vibration Control of One-Link Flexible Arm”, 24th IEEE CDC, Lauderdale, Florida, pp. 1172-1177 , 1985.
    [13] J. Van and D. Vegte, “Feedback Control System”, Third Edition, Prentice-Hall, Inc., 1994.
    [14] K. Matei, “Modeling and Feedback Control of a Flexible Arm of a Robot for Prescribed Frequency Domain Tolerances” Automatica Vol. 29, No. 4, pp. 899-909, 1993.
    [15] B. C. Kuo, “Automatic Control systems”, Seventh Edition, Prentice-hall, 1997.
    [16] L. Meirovitch, “Analytical Methods in Vibrations”, pp. 42-46, 1967.
    [17] L. Meirovitch, “Dynamics and Control of Structures”, John Wiley & Sons Inc., 1990.
    [18] M. Szary, Y. Rong, F. Lee, “Transverse Vibration Control in the Free End of Flexible Robot Arms”, Active Control of Noise and Vibration, ASME, Dynamic Systems and Control Division, Vol. 38, pp. 271-274, 1992.
    [19] M. J. Balas, “Feedback Control Systems”, IEEE Transactions on Automatic Control, Vo1. 23, No. 4, pp. 673-679, 1978.
    [20] Ogata, K., “Modern Control Engineering”, Second Edition, Prentice-Hall, 1990.
    [21] P. B. Usoro, S. S. Mahil, and R. Nadir, “A Finite Element/Lagrange Approach to Modeling Lightweight Flexible Manipulators”, ASME Journal of Dynamic Systems, Measurement and Control, Vol. 108, pp. 198-205, 1986.
    [22] S. B. Choi, B. S. Thompson and M. V. Gandhi, “Modeling and Control of a Graphite-Epoxy Composite Arm”, IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1450-1455, 1990.
    [23] S. S. Ge, T. H. Lee and G. Zhu, “Tip Tracking Control of a Flexible Manipulator Using PD Type Controller”, IEEE International Conference on Control Applications, pp. 309-313, 1996.
    [24] S. Choura, S. Jayasuriya and M. A. Medick, “On the Modeling, and Open-loop Control of a Rotating Thin Flexible Beam”, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 113, pp.26-32, 1991.
    [25] W. L. Nelson, “End-Point Sensing and Load-Adaptive Control of a Flexible Robot Arm”, IEEE Proceeding of 24th Conference on Decision and Control, pp. 1410-1415, 1985.
    [26] W.T. Qian and C. C. H. Ma, “Experiments on a Flexible One-Link Manipulator”, IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 262-265, 1991.
    [27] 黃義順,“撓性機械手臂之軌跡控制”,國立臺灣工業技術學院纖維及高分子工程技術研究所碩士論文,1996。
    [28] 柯政賓,“應用參考模式適應性控制於撓性機械手臂之端點追蹤控制”,台灣科技大學纖維及高分子系碩士學位論文,2002。
    [29] 周鵬程,“遺傳演算法原理與應用-活用MATLAB”,全華科技圖書股份有限公司。
    [30] 江衍科,“改良型基因演算模糊控制器之設計與運用”,華梵大學機電工程研究所碩士學位論文,2004。
    [31] 蔡政憲,“單桿撓性臂之穩定性分析”,國立臺灣工業技術學院纖維及高分子工程技術研究所碩士論文,1994.
    [32] 顏柄郎, “單桿撓性臂之 及H∞ 控制”,碩士論文,國立台灣大學,1990。

    QR CODE