簡易檢索 / 詳目顯示

研究生: 林建廷
Chien-ting Lin
論文名稱: 應用比下壓能及改變下壓力之單晶矽奈米流道凹槽加工模擬模式建立與實驗研究
A study on simulation model establishment and experiment for cutting of nanochannel groove on single-crystal silicon with application of specific down force energy (SDFE) and changed down force
指導教授: 林榮慶
Zone-ching Lin
口試委員: 許覺良
Chaug-liang Syu
傅光華
Kuang-hua Fuh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 140
中文關鍵詞: 比下壓能原子力顯微鏡單晶矽基板奈米流道
外文關鍵詞: specific down force energy (SDFE), atomic force microscopy (AFM), single-crystal silicon (Si) substrate, nanochannel
相關次數: 點閱:282下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文創新提出假設不同軸向比下壓能的值約為相同之定值的概念,依據不同軸向的比下壓能理論模式,以及已知奈米級加工深度及刀具形狀,推導出估算奈米級加工單晶矽工件V型溝槽的下壓力及切削力的理論公式。本文先進行探針加工奈米級V 型溝槽的實驗,由實驗先找出奈米級切削單晶矽的比下壓能值。再與用分子靜力學三維準穩態奈米切削模擬模式,模擬所得之下壓力及切削力比較,驗證本文所提出之不同軸向比下壓能的理論模式可估算切削單晶矽奈米級V型溝槽之切削力及下壓力為可行。本文亦利用偏移循環加工方法加工單晶矽基板奈米流道梯形凹槽,其為設定每加工層在固定下壓力下加工一道次,然後將探針向右偏移再加工一道次,再將探針向左往回偏移至前述兩道次中間位置加工,做為一個偏移循環。若要增加奈米流道凹槽之寬度,則為增加偏移循環,如此即可使奈米流道凹槽之凹槽寬度增加。但此方法因使用較小下壓力,深度會有所限制。因此本文另外創新提出改變下壓力之偏移加工方法,其為先偏移循環方法加工後,優先控制底部下凹的數值在本文所設定的範圍,再利用固定下壓深度的觀念,反推下壓力,可移除過大的底部突起高度。如用較大的下壓力,可獲得深度較深的凹槽,但是底部突起高度會較大,故將探針分別偏移至底部上凸位置,並控制其加工深度與中間道次之深度相同,進一步反推下壓力,利用反推下壓力所得之下壓力去移除第一層底部上凸。若底部突起高度仍大於設定之突起高度收斂值,則再次利用反推下壓力方法,將探針偏移至底部上凸位置,分別對底部上凸處再做反推之改變下壓力加工,重複前述步驟直到底部突起高度收斂至設定值內。本文使用反推下壓力之改變下壓力之偏移加工方法,先模擬加工直線型單晶矽奈米流道梯形凹槽,並進行實驗驗證。此外並配合不同形狀奈米流道路徑規劃,模擬將單晶矽基板加工岀深度約10nm~20nm之開口喇叭型結合直線奈米流道凹槽及Y型結合U型奈米流道,並進行實驗驗證。上述固定下壓力之偏移循環加工奈米流道凹槽方法,因為僅可使用較小的下壓力,故深度有所限制,僅可加工至深度約10nm,且加工奈米流道時間較長、加工道次較多。利用改變下壓力之偏移加工方法加工奈米流道梯形凹槽,可快速得到較深的深度。本文也利用不同軸向比下壓能理論公式估算固定下壓力之偏移循環方法以及改變下壓力之偏移加工方法的下壓力及切削力。本文前述加工之各種奈米流道,由於加工後之奈米流道的邊緣都會有毛邊突起,故本文使用較小之下壓力,再逐步增加下壓力在奈米流道邊緣進行切削,並使邊緣毛邊突起高度收斂至本文所設定的範圍內。最後本文進行以原子力顯微鏡探針加工單晶矽奈米流道梯型凹槽實驗,模擬上述的固定下壓力偏移循環加工方法及改變下壓力偏移加工方法,並將模擬單晶矽奈米流道梯型凹槽之結果與實驗結果比較,驗證兩種加工方法皆為可行。


The paper innovatively proposes a concept that the specific down force energy (SDFE) values of different axles are supposed to be almost the same fixed value. According to the SDFE theoretical model of different axles and the nanomachining depth and shape of cutting tool both already known, the paper derives the theoretical equations for estimation of down force and cutting force for nanomachining of V-shaped groove on single-crystal silicon (Si) workpiece. The paper firstly conducts an experiment of machining of nanoscale V-shaped groove by probe. From the experiment, the SDFE for nanocutting of single-crystal Si is found. It is then compared with the down force and cutting force acquired from simulation using the simulation model of three-dimensional quasi-steady molecular statics, and then proves it feasible to use the SDFE theoretical equation of different axles proposed by the paper to estimate the cutting force and down force for cutting of nanoscale V-shaped groove on single-crystal Si. The paper also uses offset cycle machining method to perform machining of nanochannel trapezium groove on single-crystal Si substrate. Machining is set to be carried out for one pass on each machining layer at a fixed down force. After that, the probe is offset rightwards to carry out machining for one more pass, and then leftwards to the middle position between the above two passes, finishing an offset cycle. If the width of nanochannel groove is to be increased, the number of offset cycles has to be increased. By doing so, the width of nanochannel groove can be increased. However, since a smaller down force is used in this method, groove depth is limited. Therefore, the paper additionally makes an innovative proposal of an offset machining method with a changed down force. For this method, after machining by offset cycle method, the numerical value of downward indentation at the bottom is firstly controlled to be within the range set by the paper. Then the concept of fixed down press depth is used to reversely infer the down force, and the excessively great bulgy height at the bottom can be removed. If a greater down force is used, a deeper groove can be obtained. However, due to greater bulgy height at the bottom, the probe is offset to the upward bulging position at the bottom, and the machining depth is controlled to be the same as the depth of the middle pass. Furthermore, down force is reversely inferred. Using the down force acquired from the reversely inferred down force, the upward bulginess on the 1st layer is removed. If the bulgy height at the bottom is still greater than the set convergence value of bulgy height, reverse inference method of down force can be used again. The probe is offset to the upward bulging position at the bottom, and machining is carried out at the changed down force reversely inferred again at the upward bulging position of the bottom. The above step is repeated until the bulgy height at the bottom converges to be below the set value. With offset machining method at the changed down force of the inversely inferred down force, the paper firstly simulates machining of straight-line nanochannel trapezium groove on single-crystal si, and proves the simulation by experiment. Besides, the paper makes path planning for nanochannels in different shapes and simulates machining of a trumpet-shaped opening combining with a straight-line nanochannel trapezium groove with at the depth of 10nm~20nm on single-crystal Si substrate and a Y-shaped combining with U-shaped nanochannels, and proves the simulation by experiment. For the offset cycle machining method of nanochannel groove at a fixed down force, since only a smaller down force can be used, groove depth is limited, and machining can be undergone for a depth of around 10nm only. Besides, machining of nanochannel takes a longer time and needs more machining passes. Using offset machining method with changed down force for machining of nanochannel trapezium groove can acquire a deeper depth rapidly. The paper also uses the SDFE theoretical equation of different axles to estimate the down force and cutting force for the offset cycle method at a fixed down force and the offset cycle machining method at a changed down force. As to machining of the various nanochannels mentioned above, since there is bulging burr appeared at the edge of nanochannel after machining. The paper uses a smaller down force, and then step by step increases down force to carry out cutting of nanochannel edge, and makes the bulgy height of burr at the edge converge to be within the range set by the paper. Finally, the paper conducts a machining experiment of nanochannel trapezium groove on single-crystal Si by atomic force microscopy (AFM) probe, and simulates the abovementioned offset cycle machining method at a fixed down force and the offset machining method at a changed down force. The simulation results of nanochannel trapezium groove on single-crystal Si are compared with the experimental results, proving that these two machining methods are both feasible.

摘要 I Abstract III 誌謝 V 圖目錄 X 表目錄 XVI 第一章 緒論 1 第二章 比下壓能理論及單晶矽量測比下壓能值之實驗結果 9 2.1實驗設備介紹 9 2.1.1 多模態原子力顯微鏡D3100 9 2.2奈米切削實驗設定(Experimental set-up) 10 2.2.1實驗試片及探針 10 2.3 AFM探針下壓力量測方法 12 2.4 原子力顯微鏡操作原理 14 2.4.1原子力顯微鏡的操作模式 16 2.5比下壓能理論模型及計算比下壓能方法 18 2.5.1 量測單晶矽基板之比下壓能值實驗 25 第三章 建立不同軸向之比下壓能理論模式及計算比下壓能方法 27 3.1 不同軸向比下壓能估算下壓力及切削力之方法 27 第四章 利用比下壓能理論建立固定下壓力下偏移循環方法之奈米流道加工模型 31 4.1以固定下壓力之偏移循環加工方法加工奈米流道之理論模型 31 4.2利用偏移循環加工方法各道次之下壓排除體積之運算以及幾何圖形 38 4.3 偏移循環加工方法預估加工奈米流道凹槽的下壓力與切削力 42 第五章 分子靜力學三維準穩態奈米級切削模擬模式模擬結果比較驗證 44 5.1 分子靜力學之基本原理 44 5.1.1 分子作用力及勢能函數 45 5.1.2 截斷半徑法 47 5.3 虎克-吉夫斯(Hooke-Jeeves)搜尋法 49 5.4 奈米級切削力之計算 50 5.5分子靜力學三維準穩態奈米級切削模擬模式模擬結果與下壓力及切削力公式比較驗證 54 5.5.1三維準穩態分子靜力學之奈米級切削模擬模式建立 54 5.5.2利用不同軸向比下壓能值及理論公式預估下壓力及切削力與實驗之下壓力值的結果比較 57 第六章 改變下壓力偏移加工奈米流道之凹槽模擬模式 63 6.1改變下壓力偏移加工直線型奈米流道凹槽模擬模式 63 6.2兩種形狀奈米流道實驗探針實驗路徑規劃以及切削邊緣毛邊路徑規劃 74 6.1.2 開口喇叭型結合直線奈米流道偏移循環加工路徑規劃 74 6.1.2.1開口喇叭型結合直線奈米流道切削邊緣毛邊路徑規劃 76 6.2.2 Y型結合U型奈米流道偏移循環加工路徑規劃 77 6.2.2.1Y型結合U型奈米流道切削邊緣毛邊路徑規劃 81 第七章 結果與討論 82 7.1直線奈米流道之V型凹槽實驗結果分析 83 7.2 以固定下壓力偏移循環方法模擬直線奈米流道梯形凹槽模擬結果與實驗驗證 86 7.2.1偏移循環直線奈米流道之梯形凹槽實驗結果分析 92 7.3改變下壓力加工兩種形狀奈米流道模擬分析與實驗結果 98 7.3.1 直線奈米流道加工實驗與模擬結果 98 7.3.1.1直線奈米流道切削邊緣毛邊實驗結果分析 105 7.3.2開口喇叭型結合直線奈米流道加工實驗與模擬結果 107 7.3.2.1 開口喇叭形結合直線型奈米流道切削邊緣毛邊實驗結果分析 114 7.3.3 Y型結合U型奈米流道加工實驗與模擬結果 119 7.3.3.1 Y型結合U型奈米流道切削邊緣毛邊實驗結果分析 123 7.4不同探針半徑及偏移量對梯形凹槽底部突起量的影響模擬分析 129 第八章 結論 133 參考文獻 135

參考文獻
[1] Binning, G., Quate,C. F. and Gerber, C.,”Atomic Force Microscope”, Physical Review Letters , Vol. 56, pp. 930-933 (1986).
[2] Nanjo, H., Nony, L., Yoneya, M. and Aime J.P.,”Simulation of Section Curve by Phase Constant Dynamic Mode Atomic Force Microscopy in Non-contact Situation”, Applied Surface Science, Vol. 210 , No.1, pp. 49-53 (2003).
[3] Lubben, J. F. and Johannsmann ,D., “Nanoscale High-frequency Contact Mechanics Using an AFM Tip and a Quartz Crystal Resonator”, Langmuir,Vol. 20, No.9, pp. 3698-3703 (2004).
[4] Tseng, A. A., Jou, S., Notargiacomo, A. and Chen,T.P., ”Recent Developments in Tip-based Nanofabrication and Its Roadmap”, Journal of Nanoscience & Nanotechnology, Vol. 8, No. 5, pp. 2167–2186 (2008).
[5] Fang, T.H., Weng,C.I. and Chang,J.G.,”Machining Characterization of Nano-lithography Process by Using Atomic Force Microscopy”, Nanotechnology, Vol. 11, No.5, pp. 181-187 (2000).
[6] Schumacher, H. W., Keyser, U. F. and Zeitler, U., “Controlled Mechanical AFM Machining of Two-dimensional Electron systems”, Fabrication of a single-electron transistor, Physica E., Vol.6, No.1, pp. 860-863 (2000).
[7] Yan,Y., Sun,T.,Liang, Y.,C. and Dong, S., “Investigation on AFM Based Micro/nano CNC Machining System”, International Journal of Machine Tools and Manufacture, Vol.47,No.11, pp. 1651-1659 (2007).
[8] Wang ,Z.Q., Jiao, N.D., Tung ,S. and Dong ,Z.L., “Research on the Atomic Force Microscopy-based Fabrication of Nanochannels on Silicon Oxide Surfaces”, Chinese Science Bulletin, Vol. 55, No. 30, pp. 3466-3471 (2010).
[9] Tseng, A.A., “A Comparison Study of Scratch and Wear Properties Using Atomic Force Microscopy”, J. Applied Surface Science, Vol. 256, No.13, pp. 4246- 4252 (2010).
[10] Lin, Z.C. and Huang, J.C., “The Study of Estimation Method of Cutting Force for Conical Tool Under Nanoscale Depth of Cut by Molecular Dynamics”, Nanotechnology, Vol.19, pp.115701-1 ~115701-13 (2008).
[11] Nga ,C.K., Melkotea ,S.N. , Rahmanb ,M. and Kumar ,A.S., “Experimental Study of Micro- and Nano-scale Cutting of Aluminum 7075-T6”, Machine Tools & Manufacture, Vol.46, No.9, pp. 929-936 (2006).
[12] Peng, P., Shi ,T., Liao, G., Tang,Z., and Liu, C.,”Scratch of Submicron Grooves on Aluminum Film with AFM Diamond Tip, IEEE International Conference on Nano/Micro Engineered and Molecular Systems , Shenzhen, China , pp.983-986 (2009).
[13] Fang, F.Z., Wu, H. and Lin, Y.C., “Modeling and Experimental Investigation on Nanometric Cutting of Monocrystalline Silicon” , International Journal of Machine Tools and Manufacture, Vol. 45, No. 15, pp. 1681-1686 (2005).
[14] Ogino, T., N. Shinya and J. I. Shirakashi, “Scratch Nanolithography on Si Surface Using Scanning Probe Microscopy: Influence of Scanning Parameters on Groove Size”, Japanese Journal of Applied Physics ,Vol. 47, No. 1, pp. 712- 714 (2008).
[15] Chen, Y.J., Hsu, J.H. and Lin, H.N.,“Fabrication of Metal Nanowires by Atomic Force Microscopy Nanoscratching and Lift-off Process”, Nanotechnology,Vol. 16,No.8, pp.1112-1115(2005).
[16] Tseng, A.A., Shirakashi , J., Nishimura,S., Miyashita,K. and Notargiacomo,A. ,“ Scratching Properties of Nickel-Iron Thin Film and Silicon Using Atomic Force Microscopy”, Journal of Applied Physics, Vol. 106, No. 4, pp.44314-1~44314-8 (2009).
[17] Cheng, M. S., Ho, J. S., Tan, C. H., Wong, J. P. S., Ng, L. C., and Toh, C. S., ”Development of an electrochemical membrane-based nanobiosensor forultrasensitive detection of dengue virus”, Analytica Chimica Acta , Vol.725,pp.74-80 (2012).
[18] Salieb-Beugelaar, G. B., Teapal,J. Nieuwkasteele , J. V., Wijnperle’, D., Tegenfeldt, J. O., Lisdat, F., Berg, A. V. D., and Eijkel, J. C. T.,” Field-Dependent DNA Mobility in 20 nm High Nanoslits’’, Nano Lett.,Vol.8,No.7, pp.1785-1790,(2008).
[19] Liu,Y. L., Iqbal ,S. M.,”Silicon-based Novel Bio-sensing Platforms at The Micro and Nano Scale’’, ECS Transactions, Vol.16, No.15, pp.25-45 (2009).
[20] Li, J. , Fologea, D., Gershow , M., Ledden , B., McNabb , D. S., and Golovchenko , J. A., ,” Detecting Single Stranded DNA with a Solid State Nanopore’’, Nano Lett., 2005 ,Vol. 5, No. 10.,pp1905-1909 (2005).
[21] Fologea, D. , Uplinger , J., Thomas ,B., McNabb, D. S.,and Li, J. ,” Slowing DNA Translocation in a Solid-State Nanopore’’, Nano Lett., Vol. 5, No. 9,pp1734-1737 (2005).
[22] Maleki, T.,Mohammadi, S.,and Ziaie, B., ” A Nanofluidic Channel with Embeddedtransverse Nanoelectrodes ”, IOP 1 Publishing Ltd,UK. (2009).
[23] Wang, Z., Wang ,D., Jiao, N., Tung,S.,and Dong, Z., ” A Nanochannel System Fabricated by MEMS Microfabrication and Atomic Force Microscopy”,IEEE Conference on Nano/Micro Engineered and Molecular Systems ,Kaohsiung, Taiwan (2011).
[24]鄭皓元,”單晶矽基板奈米流道加工法及實驗研究”國立台灣科技大學機械工程研究所,碩士論文,民國101年。
[25] Weng,X., Jiang, H., and Li, D. Microfluidic DNA Hybridizationassays ,Springer-Verlag, Canada, pp.367-383 (2011).
[26]王建鈞,”AFM探針切削單晶矽V型溝槽之切削力及塑性熱源產生溫度分佈模擬分析”國立台灣科技大學機械工程研究所,碩士論文,民國102年。
[27] Lin,Z.C. and Hsu, Y.C. ,” A Study of Estimating Cutting
Depth for Multi-pass Nanoscale Cutting by Using Atomic Force
Microscopy’’, Applied Surface Science ,Vol. 258, No. 10, pp. 4513-4522 (2012).
[28] Digital Instruments, Dimension™ 3100 Manual. Version 4.43B, Digital Instruments Veeco Metrilogy Group, 2000.

無法下載圖示 全文公開日期 2018/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE