簡易檢索 / 詳目顯示

研究生: 特斯法耶·阿拉米魯·德西
Tesfaye Alamirew Dessie
論文名稱: 用於混合水電解和電化學 CO2 還原應用的鉬基單原子電催化劑
Molybdenum based single atom electro-catalysts for hybrid water electrolysis and electrochemical CO2 reduction applications
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 黃炳照
Bing-Joe Hwang
蔡孟哲
Meng-Che Tsai
蘇威年
Wei-Nien Su
王迪彥
Di-Yan Wang
尼古斯·加比耶
Nigus Gabbiye
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 98
中文關鍵詞: 碘化物耦合電化學水分解氮摻雜碳球上的單個鉬原子電化學二氧化碳減排四苯基卟啉鉬二聚體甲醇
外文關鍵詞: Iodide coupled electrochemical water splitting, Single molybdenum atom on nitrogen doped carbon sphere, Hydrogen, Electrochemical carbon dioxide reduction, Molybdenum tetra-phenyl porphyrin dimer, Methanol
相關次數: 點閱:482下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電化學水分解產生氫氣和二氧化碳還原生產甲醇是滿足未來能源需求中最具吸引力及環保的策略。然而,這種電化學反應需要使用昂貴的貴金屬催化劑,這使得它們在工業應用中不符合需求。近年來,非貴金屬單金屬原子催化劑(SACs)因其在電化學水分解和二氧化碳還原應用中優秀的性能而越來越受歡迎。本文全面性地討論了碘化物結合水解離和二氧化碳還原反應中單原子鉬基催化劑的製備、表徵和催化性能。
    在第一項工作中,使用化學氣相沉積法,我們成功地將鉬單原子合成並分佈在有缺陷的氮摻雜碳球上(Mo-N4 / d-C),用於IOR結合產氫的應用。對於陽極端的碘氧化,Mo-N4/d-C 在0.77 V vs. RHE下即可達到10 mA cm-2的電流密度。在產氫端,該催化劑可生成0.1063 ml gcat-1 min-1的氫氣,法拉第效率為99.8%。此外,在DFT的研究中表明Mo-N4 / d-C結構可以促進碘化物氧化反應。
    在第二項研究中,我們成功開發了氧鉬四苯基卟啉二聚體([O=Mo(TPP)]2O)催化劑,用於電化學二氧化碳還原為甲醇的應用。該催化劑能夠在 -1.0 V vs. RHE 下,在 0.1M HClO4中將二氧化碳轉化為甲醇,法拉第效率為 78%,電流密度為 50 mA cm-2。[O=Mo(TPP)]2O二聚體還能夠在-1.2 V vs. RHE下將二氧化碳轉化為乙醇,FE為45%。在電化學二氧化碳還原過程中,我們還進行了in-situ XAS和in-situ FTIR的研究,分別分析了催化劑結構的發展並了解反應的機制。理論研究中表明,[O=Mo(TPP)]2O二聚體結構有利於二氧化碳透過電化學轉化為甲醇。


    Electrochemical water splitting to produce hydrogen and CO2 reduction to produce methanol is the most attractive and environmentally benign strategies to satisfy the energy needs of the future. However, such electrochemical reactions require the use of expensive precious metal catalysts, which makes them impractical for industrial applications. Non precious single metal atom catalysts (SACs) have lately gained popularity owing to their superior performance in electrochemical water splitting and CO2 reduction applications. This thesis provides a comprehensive discussion of the preparation, characterization, and catalytic performance of single-atom molybdenum-based catalysts for iodide coupled water dissociation and CO2 reduction reactions.
    In the first work, using chemical vapor deposition technique, we successfully synthesized a single molybdenum atom distributed on a defective nitrogen carbon sphere (Mo-N4/d-C) for IOR-based hydrogen production application. For anodic iodide oxidation, the Mo-N4/d-C catalyst reaches a current density of 10 mA cm-2 at 0.77 V vs. RHE. This catalyst generates 0.1063 ml gcat-1 min-1 hydrogen with a Faradic efficiency of 99.8%. Furthermore, DFT studies show that the Mo-N4/d-C structure promotes iodide oxidation reaction.
    In the second work, we successfully develop oxy-molybdum tetraphenylporpherine dimer (([O=Mo(TPP)]2O) catalyst for electrochemical CO2 reduction to methanol application. This catalyst is able to convert carbon dioxide to methanol at -1.0 V vs. RHE in 0.1M HClO4 solution with 74 % FE and 50 mA cm-2 current density. The [O=Mo(TPP)]2O dimer is also capable of converting CO2 into CH3CH2OH with FE of 45% at -1.2 V vs. RHE. During the electrochemical CO2 reduction process, we also conduct in-situ XAS and in-situ FTIR to study the structural development of the catalyst and get mechanistic insight into the reaction respectively. It has been shown via theoretical studies that the [O=Mo(TPP)]2O dimer structure facilitates electrochemical conversion of CO2 to CH3OH.

    摘要..……………………………………………………………………………………………....i Abstract ii Acknowledgement iii List of figures vii Chapter 1: Introduction 1 1.1 General Background 1 1.2 Electrochemical water splitting 2 1.2.1 Current challenges of the electrochemical water splitting 4 1.3 Electrochemical reduction of CO2 4 1.3.1 Current challenges of the electrochemical carbon dioxide reduction to methanol 6 Chapter 2: Literature Review 7 2.1 Value-added water Electrolysis 7 2.1.1 Iodide oxidation reaction (IOR) 9 2.1.2 Amine oxidation reaction (AmOR) 15 2.1.3 Alcohol oxidation reaction (AOR) 17 2.1.4 Hydrazine oxidation reaction (HzOR) 19 2.1.5 Urea Oxidation Reduction (UOR) 21 2.2 Efficient catalysts for electrochemical CO2 to CH3OH conversion 24 2.2.1 Metal acetylacetonates 24 2.2.2 Metal Oxides 24 2.2.3 Metal-organic compounds 25 2.2.4 Pyridine electro-catalysts 26 2.2.5 Non-Metal electro-catalysts 26 2.2.6 Molybdenum-based catalysts 28 2.3 Single atom catalyst synthesis 29 2.3.1 Atomic layer deposition (ALD) 30 2.3.2 Electrochemical deposition (ECD) 31 2.3.3 Chemical vapor deposition method 31 2.3.4 Ball-milling method 32 2.4 Two-step doping method 33 2.4.1 Photo-chemical method. 33 2.4.2 Ion exchange method 34 2.5 Motivation and Objectives of the Study 36 2.5.1 Motivation 36 2.5.2 Objectives 37 Chapter 3: Experimental section and characterization 38 3.1 Chemicals and reagents 38 3.2 Single atom catalysts synthesis 39 3.2.1 Nitrogen doped carbon sphere (NCS) synthesis 39 3.2.2 Mo-N4/d-C electro-catalyst synthesis 39 3.2.3 [O=Mo(TPP)]2O electro-catalyst synthesis 40 3.3 Electrochemical Tests 40 3.3.1 Iodide oxidation electrochemical test 40 3.3.2 CO2 reduction electrochemical test 42 3.4 Characterization of Single-Atom Catalysts 43 3.4.1 High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy 43 3.4.2 X-ray Absorption Spectroscopy 43 3.4.3 Infrared Spectroscopy 45 3.4.4 X-ray Photoelectron Spectroscopy 45 3.4.5 X-ray powder diffraction 45 3.4.6 DFT calculations 45 Chapter 4: Efficient H2 Evolution coupled with Anodic Oxidation of Iodide over Defective Carbon-supported Single-atom Mo-N4 Electro-catalyst 46 4.1 Introduction 46 4.2 Results and Discussion 47 4.2.1 Characterization of Mo-N4/d-C single atom catalyst 47 4.2.2 Electrochemical IOR Performance 54 4.2.3 DFT calculations 58 4.2.4 Summary 60 Chapter 5: Electrochemical CO2 to methanol conversion through oxo -molybdenum tetra-phenyl-porphyrin dimer catalyst. 61 5.1 Introduction 61 5.2 Results and discussion 63 5.2.1 Synthesis and characterizations 63 5.2.2 Electrochemical performance 69 5.2.3 In-situ XAS Analysis 71 5.2.4 In-situ ATR-IR Spectroscopic Analysis 74 5.2.5 Post-reaction analysis 76 5.2.6 DFT Calculations 76 5.3 Summary 79 Chapter 6: Conclusions and perspectives 80 6.1 Conclusions 80 6.2 Future perspectives 81

    (1) Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry 2017, 1 (1), 0003. DOI: 10.1038/s41570-016-0003.
    (2) Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy 2019, 4 (9), 732-745. DOI: 10.1038/s41560-019-0450-y.
    (3) McHugh, P. J.; Stergiou, A. D.; Symes, M. D. Decoupled Electrochemical Water Splitting: From Fundamentals to Applications. Advanced Energy Materials 2020, 10 (44), 2002453, https://doi.org/10.1002/aenm.202002453. DOI: https://doi.org/10.1002/aenm.202002453 (acccessed 2023/05/22).
    (4) Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews 2015, 44 (8), 2060-2086, 10.1039/C4CS00470A. DOI: 10.1039/C4CS00470A.
    (5) You, B.; Sun, Y. Innovative Strategies for Electrocatalytic Water Splitting. Accounts of Chemical Research 2018, 51 (7), 1571-1580. DOI: 10.1021/acs.accounts.8b00002.
    (6) Silberberg, M.; Silberberg, M. S.; Amateis, P. ISE Chemistry: The Molecular Nature of Matter and Change; McGraw-Hill Education, 2020.
    (7) Hua, W.; Sun, H.-H.; Xu, F.; Wang, J.-G. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Metals 2020, 39 (4), 335-351. DOI: 10.1007/s12598-020-01384-7.
    (8) Liao, P.; Keith, J. A.; Carter, E. A. Water Oxidation on Pure and Doped Hematite (0001) Surfaces: Prediction of Co and Ni as Effective Dopants for Electrocatalysis. Journal of the American Chemical Society 2012, 134 (32), 13296-13309. DOI: 10.1021/ja301567f.
    (9) Liang, Q.; Brocks, G.; Bieberle-Hütter, A. Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions. Journal of Physics: Energy 2021, 3 (2), 026001. DOI: 10.1088/2515-7655/abdc85.
    (10) Chen, L.; Jang, H.; Kim, M. G.; Qin, Q.; Liu, X.; Cho, J. FexNiy/CeO2 loaded on N-doped nanocarbon as an advanced bifunctional electrocatalyst for the overall water splitting. Inorganic Chemistry Frontiers 2020, 7 (2), 470-476, 10.1039/C9QI01251F. DOI: 10.1039/C9QI01251F.
    (11) Rao, P.; Muller, M. R. Industrial Oxygen: Its Generation and Use. 2007.
    (12) Albo, J.; Alvarez-Guerra, M.; Castaño, P.; Irabien, A. Towards the electrochemical conversion of carbon dioxide into methanol. Green Chemistry 2015, 17 (4), 2304-2324, 10.1039/C4GC02453B. DOI: 10.1039/C4GC02453B.
    (13) Li, Y.; Cui, X.; Dong, K.; Junge, K.; Beller, M. Utilization of CO2 as a C1 Building Block for Catalytic Methylation Reactions. ACS Catalysis 2017, 7 (2), 1077-1086. DOI: 10.1021/acscatal.6b02715.
    (14) Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chemical Reviews 2019, 119 (12), 7610-7672. DOI: 10.1021/acs.chemrev.8b00705.
    (15) Zhang, Y.; Guo, S.-X.; Zhang, X.; Bond, A. M.; Zhang, J. Mechanistic understanding of the electrocatalytic CO2 reduction reaction – New developments based on advanced instrumental techniques. Nano Today 2020, 31, 100835. DOI: https://doi.org/10.1016/j.nantod.2019.100835.
    (16) Liu, Y.; Li, F.; Zhang, X.; Ji, X. Recent progress on electrochemical reduction of CO2 to methanol. Current Opinion in Green and Sustainable Chemistry 2020, 23, 10-17. DOI: https://doi.org/10.1016/j.cogsc.2020.03.009.
    (17) Olah, G. A.; Goeppert, A.; Prakash, G. K. S. Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. The Journal of Organic Chemistry 2009, 74 (2), 487-498. DOI: 10.1021/jo801260f.
    (18) Wang, H.-Y.; Sun, M.-L.; Ren, J.-T.; Yuan, Z.-Y. Circumventing Challenges: Design of Anodic Electrocatalysts for Hybrid Water Electrolysis Systems. Advanced Energy Materials 2023, 13 (4), 2203568, https://doi.org/10.1002/aenm.202203568. DOI: https://doi.org/10.1002/aenm.202203568 (acccessed 2023/01/28).
    (19) Li, J.; Yao, C.; Kong, X.; Li, Z.; Jiang, M.; Zhang, F.; Lei, X. Boosting Hydrogen Production by Electrooxidation of Urea over 3D Hierarchical Ni4N/Cu3N Nanotube Arrays. ACS Sustainable Chemistry & Engineering 2019, 7 (15), 13278-13285. DOI: 10.1021/acssuschemeng.9b02510. Xiang, M.; Xu, Z.; Wu, Q.; Wang, Y.; Yan, Z. Selective electrooxidation of primary amines over a Ni/Co metal-organic framework derived electrode enabling effective hydrogen production in the membrane-free electrolyzer. Journal of Power Sources 2022, 535, 231461. DOI: https://doi.org/10.1016/j.jpowsour.2022.231461. Zhang, J.-Y.; Wang, H.; Tian, Y.; Yan, Y.; Xue, Q.; He, T.; Liu, H.; Wang, C.; Chen, Y.; Xia, B. Y. Anodic Hydrazine Oxidation Assists Energy-Efficient Hydrogen Evolution over a Bifunctional Cobalt Perselenide Nanosheet Electrode. Angewandte Chemie International Edition 2018, 57 (26), 7649-7653, https://doi.org/10.1002/anie.201803543. DOI: https://doi.org/10.1002/anie.201803543 (acccessed 2023/01/28).
    (20) Dessie, T. A.; Huang, W.-H.; Adam, D. B.; Awoke, Y. A.; Wang, C.-H.; Chen, J.-L.; Pao, C.-W.; Habtu, N. G.; Tsai, M.-C.; Su, W.-N.; et al. Efficient H2 Evolution Coupled with Anodic Oxidation of Iodide over Defective Carbon-Supported Single-Atom Mo-N4 Electrocatalyst. Nano Letters 2022, 22 (18), 7311-7317. DOI: 10.1021/acs.nanolett.2c01229.
    (21) Largeron, M. Protocols for the Catalytic Oxidation of Primary Amines to Imines. European Journal of Organic Chemistry 2013, 2013 (24), 5225-5235, https://doi.org/10.1002/ejoc.201300315. DOI: https://doi.org/10.1002/ejoc.201300315 (acccessed 2023/02/02).
    (22) Li, Y.; Dang, Z.; Gao, P. High-efficiency electrolysis of biomass and its derivatives: Advances in anodic oxidation reaction mechanism and transition metal-based electrocatalysts. Nano Select 2021, 2 (5), 847-864, https://doi.org/10.1002/nano.202000227. DOI: https://doi.org/10.1002/nano.202000227 (acccessed 2023/02/02).
    (23) Yusubov, M. S.; Zhdankin, V. V. Iodine catalysis: A green alternative to transition metals in organic chemistry and technology. Resource-Efficient Technologies 2015, 1 (1), 49-67. DOI: https://doi.org/10.1016/j.reffit.2015.06.001.
    (24) Zimmermann, M.; Delange, F. Iodine supplementation of pregnant women in Europe: a review and recommendations. European Journal of Clinical Nutrition 2004, 58 (7), 979-984. DOI: 10.1038/sj.ejcn.1601933. Wang, J.; Liu, W.; Luo, G.; Li, Z.; Zhao, C.; Zhang, H.; Zhu, M.; Xu, Q.; Wang, X.; Zhao, C.; et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy & Environmental Science 2018, 11 (12), 3375-3379, 10.1039/C8EE02656D. DOI: 10.1039/C8EE02656D. Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1972, 39 (1), 163-184. DOI: https://doi.org/10.1016/S0022-0728(72)80485-6.
    (25) Swathirajan, S.; Bruckenstein, S. The anodic behavior of iodide at platinum in the presence of an iodine film under potentiostatic steady-state and hydrodynamic modulation conditions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1983, 143 (1), 167-178. DOI: https://doi.org/10.1016/S0022-0728(83)80262-9.
    (26) Bentley, C. L.; Bond, A. M.; Hollenkamp, A. F.; Mahon, P. J.; Zhang, J. Voltammetric Determination of the Iodide/Iodine Formal Potential and Triiodide Stability Constant in Conventional and Ionic Liquid Media. The Journal of Physical Chemistry C 2015, 119 (39), 22392-22403. DOI: 10.1021/acs.jpcc.5b07484.
    (27) Moges, E. A.; Chang, C.-Y.; Tsai, M.-C.; Su, W.-N.; Hwang, B. J. Electrocatalysts for value-added electrolysis coupled with hydrogen evolution. EES Catalysis 2023, 10.1039/D3EY00017F. DOI: 10.1039/D3EY00017F.
    (28) Peng, S.-M.; Patil, S. B.; Chang, C.-C.; Chang, S.-T.; Chen, Y.-C.; Wu, K.-C.; Su, W.-N.; Hwang, B. J.; Wang, D.-Y. Fast charge transfer between iodide ions and a delocalized electron system on the graphite surface for boosting hydrogen production. Journal of Materials Chemistry A 2022, 10 (45), 23982-23989, 10.1039/D2TA06517G. DOI: 10.1039/D2TA06517G.
    (29) Park, Y. S.; Jang, G.; Sohn, I.; Lee, H.; Tan, J.; Yun, J.; Ma, S.; Lee, J.; Lee, C. U.; Moon, S.; et al. Efficient solar fuel production enabled by an iodide oxidation reaction on atomic layer deposited MoS2. Carbon Energy 2023, n/a (n/a), e366, https://doi.org/10.1002/cey2.366. DOI: https://doi.org/10.1002/cey2.366 (acccessed 2023/06/29).
    (30) Adam, D. B.; Tsai, M.-C.; Awoke, Y. A.; Huang, W.-H.; Lin, C.-H.; Alamirew, T.; Ayele, A. A.; Yang, Y.-W.; Pao, C.-W.; Su, W.-N.; et al. Engineering self-supported ruthenium-titanium alloy oxide on 3D web-like titania as iodide oxidation reaction electrocatalyst to boost hydrogen production. Applied Catalysis B: Environmental 2022, 316, 121608. DOI: https://doi.org/10.1016/j.apcatb.2022.121608.
    (31) Adam, D. B.; Tsai, M.-C.; Awoke, Y. A.; Huang, W.-H.; Yang, Y.-W.; Pao, C.-W.; Su, W.-N.; Hwang, B. J. Iodide Oxidation Reaction Catalyzed by Ruthenium–Tin Surface Alloy Oxide for Efficient Production of Hydrogen and Iodine Simultaneously. ACS Sustainable Chemistry & Engineering 2021, 9 (26), 8803-8812. DOI: 10.1021/acssuschemeng.1c01867.
    (32) Bentley, C. L.; Bond, A. M.; Hollenkamp, A. F.; Mahon, P. J.; Zhang, J. Unexpected Complexity in the Electro-Oxidation of Iodide on Gold in the Ionic Liquid 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. Analytical Chemistry 2013, 85 (23), 11319-11325. DOI: 10.1021/ac402150y.
    (33) Demoz, A.; Khulbe, C.; Fairbridge, C.; Petrovic, S. Iodide mediated electrolysis of acidic coke/coal suspension. Journal of Applied Electrochemistry 2008, 38 (6), 845-851. DeepDyve.
    (34) Abe, R.; Shinmei, K.; Koumura, N.; Hara, K.; Ohtani, B. Visible-Light-Induced Water Splitting Based on Two-Step Photoexcitation between Dye-Sensitized Layered Niobate and Tungsten Oxide Photocatalysts in the Presence of a Triiodide/Iodide Shuttle Redox Mediator. Journal of the American Chemical Society 2013, 135 (45), 16872-16884. DOI: 10.1021/ja4048637.
    (35) Froidevaux, V.; Negrell, C.; Caillol, S.; Pascault, J.-P.; Boutevin, B. Biobased Amines: From Synthesis to Polymers; Present and Future. Chemical Reviews 2016, 116 (22), 14181-14224. DOI: 10.1021/acs.chemrev.6b00486.
    (36) Kashiwagi, Y.; Kurashima, F.; Kikuchi, C.; Anzai, J.-I.; Osa, T.; Bobbin, J. M. Electrocatalytic Oxidation of Amines to Nitriles on a TEMPO-modified Graphite Felt Electrode (TEMPO = 2,2,6,6-tetramethylpiperidin-1-yloxyl). Journal of the Chinese Chemical Society 1998, 45 (1), 135-138, https://doi.org/10.1002/jccs.199800023. DOI: https://doi.org/10.1002/jccs.199800023 (acccessed 2023/01/11).
    (37) Xue, S.; Watzele, S.; Čolić, V.; Brandl, K.; Garlyyev, B.; Bandarenka, A. S. Reconsidering Water Electrolysis: Producing Hydrogen at Cathodes Together with Selective Oxidation of n-Butylamine at Anodes. ChemSusChem 2017, 10 (24), 4812-4816, https://doi.org/10.1002/cssc.201701802. DOI: https://doi.org/10.1002/cssc.201701802 (acccessed 2023/02/02).
    (38) Kashiwagi, Y.; Kurashima, F.; Kikuchi, C.; Anzai, J.-i.; Osa, T.; M. Bobbitt, J. Enantioselective electrocatalytic oxidation of racemic amines using a chiral 1-azaspiro[5.5]undecane N-oxyl radical. Chemical Communications 1999, (19), 1983-1984, 10.1039/A905894J. DOI: 10.1039/A905894J.
    (39) Chen, Y. X.; Lavacchi, A.; Miller, H. A.; Bevilacqua, M.; Filippi, J.; Innocenti, M.; Marchionni, A.; Oberhauser, W.; Wang, L.; Vizza, F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nature Communications 2014, 5 (1), 4036. DOI: 10.1038/ncomms5036.
    (40) Han, X.; Sheng, H.; Yu, C.; Walker, T. W.; Huber, G. W.; Qiu, J.; Jin, S. Electrocatalytic Oxidation of Glycerol to Formic Acid by CuCo2O4 Spinel Oxide Nanostructure Catalysts. ACS Catalysis 2020, 10 (12), 6741-6752. DOI: 10.1021/acscatal.0c01498.
    (41) González-Cobos, J.; Baranton, S.; Coutanceau, C. Development of Bismuth-Modified PtPd Nanocatalysts for the Electrochemical Reforming of Polyols into Hydrogen and Value-Added Chemicals. ChemElectroChem 2016, 3 (10), 1694-1704, https://doi.org/10.1002/celc.201600147. DOI: https://doi.org/10.1002/celc.201600147 (acccessed 2023/06/30).
    (42) , S.; Kaushal, P. Feasibility analysis for ethanol blended fuel in India. Biofuels 2020, 11 (7), 763-775. DOI: 10.1080/17597269.2017.1413858.
    (43) Bulushev, D. A.; Ross, J. R. H. Towards Sustainable Production of Formic Acid. ChemSusChem 2018, 11 (5), 821-836, https://doi.org/10.1002/cssc.201702075. DOI: https://doi.org/10.1002/cssc.201702075 (acccessed 2023/07/01).
    (44) Pugh, S.; McKenna, R.; Halloum, I.; Nielsen, D. R. Engineering Escherichia coli for renewable benzyl alcohol production. Metabolic Engineering Communications 2015, 2, 39-45. DOI: https://doi.org/10.1016/j.meteno.2015.06.002.
    (45) Lorz, P. M.; Towae, F. K.; Enke, W.; Jäckh, R.; Bhargava, N. Phthalic Acid and Derivatives. In Ullmann's Encyclopedia of Industrial Chemistry, 2000.
    (46) Liu, H.; Liu, Y.; Li, M.; Liu, X.; Luo, J. Transition-metal-based electrocatalysts for hydrazine-assisted hydrogen production. Materials Today Advances 2020, 7, 100083. DOI: https://doi.org/10.1016/j.mtadv.2020.100083.
    (47) Cao, X.; Wang, B.; Su, Q. Anodic oxidation of hydrazine on glassy carbon electrodes in acetonitrile. Journal of Electroanalytical Chemistry 1993, 361 (1), 211-214. DOI: https://doi.org/10.1016/0022-0728(93)87056-2.
    (48) Wang, G.; Chen, J.; Cai, P.; Jia, J.; Wen, Z. A self-supported Ni–Co perselenide nanorod array as a high-activity bifunctional electrode for a hydrogen-producing hydrazine fuel cell. Journal of Materials Chemistry A 2018, 6 (36), 17763-17770, 10.1039/C8TA06827E. DOI: 10.1039/C8TA06827E.
    (49) Tang, C.; Zhang, R.; Lu, W.; Wang, Z.; Liu, D.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. Energy-Saving Electrolytic Hydrogen Generation: Ni2P Nanoarray as a High-Performance Non-Noble-Metal Electrocatalyst. Angewandte Chemie International Edition 2017, 56 (3), 842-846, https://doi.org/10.1002/anie.201608899. DOI: https://doi.org/10.1002/anie.201608899 (acccessed 2023/01/24).
    (50) Wang, J.; Ma, X.; Liu, T.; Liu, D.; Hao, S.; Du, G.; Kong, R.; Asiri, A. M.; Sun, X. NiS2 nanosheet array: A high-active bifunctional electrocatalyst for hydrazine oxidation and water reduction toward energy-efficient hydrogen production. Materials Today Energy 2017, 3, 9-14. DOI: https://doi.org/10.1016/j.mtener.2017.02.002.
    (51) Hosseini, S. R.; Ghasemi, S.; Kamali-Rousta, M. Preparation of CuO/NiO composite nanofibers by electrospinning and their application for electro-catalytic oxidation of hydrazine. Journal of Power Sources 2017, 343, 467-476. DOI: https://doi.org/10.1016/j.jpowsour.2017.01.083.
    (52) Sun, Q.; Zhou, M.; Shen, Y.; Wang, L.; Ma, Y.; Li, Y.; Bo, X.; Wang, Z.; Zhao, C. Hierarchical nanoporous Ni(Cu) alloy anchored on amorphous NiFeP as efficient bifunctional electrocatalysts for hydrogen evolution and hydrazine oxidation. Journal of Catalysis 2019, 373, 180-189. DOI: https://doi.org/10.1016/j.jcat.2019.03.039.
    (53) Wang, Z.; Xu, L.; Huang, F.; Qu, L.; Li, J.; Owusu, K. A.; Liu, Z.; Lin, Z.; Xiang, B.; Liu, X.; et al. Copper–Nickel Nitride Nanosheets as Efficient Bifunctional Catalysts for Hydrazine-Assisted Electrolytic Hydrogen Production. Advanced Energy Materials 2019, 9 (21), 1900390, https://doi.org/10.1002/aenm.201900390. DOI: https://doi.org/10.1002/aenm.201900390 (acccessed 2023/01/24).
    (54) Wang, J.; Kong, R.; Asiri, A. M.; Sun, X. Replacing Oxygen Evolution with Hydrazine Oxidation at the Anode for Energy-Saving Electrolytic Hydrogen Production. ChemElectroChem 2017, 4 (3), 481-484, https://doi.org/10.1002/celc.201600759. DOI: https://doi.org/10.1002/celc.201600759 (acccessed 2023/01/24).
    (55) Wang, L.; Cao, J.; Cheng, X.; Lei, C.; Dai, Q.; Yang, B.; Li, Z.; Younis, M. A.; Lei, L.; Hou, Y.; et al. ZIF-Derived Carbon Nanoarchitecture as a Bifunctional pH-Universal Electrocatalyst for Energy-Efficient Hydrogen Evolution. ACS Sustainable Chemistry & Engineering 2019, 7 (11), 10044-10051. DOI: 10.1021/acssuschemeng.9b01315.
    (56) Ma, X.; Wang, J.; Liu, D.; Kong, R.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. Hydrazine-assisted electrolytic hydrogen production: CoS2 nanoarray as a superior bifunctional electrocatalyst. New Journal of Chemistry 2017, 41 (12), 4754-4757, 10.1039/C7NJ00326A. DOI: 10.1039/C7NJ00326A.
    (57) Liu, X.; He, J.; Zhao, S.; Liu, Y.; Zhao, Z.; Luo, J.; Hu, G.; Sun, X.; Ding, Y. Self-powered H2 production with bifunctional hydrazine as sole consumable. Nature Communications 2018, 9 (1), 4365. DOI: 10.1038/s41467-018-06815-9.
    (58) Pu, Z.; Saana Amiinu, I.; Gao, F.; Xu, Z.; Zhang, C.; Li, W.; Li, G.; Mu, S. Efficient strategy for significantly decreasing overpotentials of hydrogen generation via oxidizing small molecules at flexible bifunctional CoSe electrodes. Journal of Power Sources 2018, 401, 238-244. DOI: https://doi.org/10.1016/j.jpowsour.2018.08.085.
    (59) Liu, M.; Zhang, R.; Zhang, L.; Liu, D.; Hao, S.; Du, G.; Asiri, A. M.; Kong, R.; Sun, X. Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction. Inorganic Chemistry Frontiers 2017, 4 (3), 420-423, 10.1039/C6QI00384B. DOI: 10.1039/C6QI00384B.
    (60) Zhang, L.; Liu, D.; Hao, S.; Xie, L.; Qu, F.; Du, G.; Asiri, A. M.; Sun, X. Electrochemical Hydrazine Oxidation Catalyzed by Iron Phosphide Nanosheets Array toward Energy-Efficient Electrolytic Hydrogen Production from Water. ChemistrySelect 2017, 2 (12), 3401-3407, https://doi.org/10.1002/slct.201601979. DOI: https://doi.org/10.1002/slct.201601979 (acccessed 2023/01/24).
    (61) Gao, Y.; Wang, Q.; He, T.; Zhang, J.-Y.; Sun, H.; Zhao, B.; Xia, B. Y.; Yan, Y.; Chen, Y. Defective crystalline molybdenum phosphides as bifunctional catalysts for hydrogen evolution and hydrazine oxidation reactions during water splitting. Inorganic Chemistry Frontiers 2019, 6 (10), 2686-2695, 10.1039/C9QI01005J. DOI: 10.1039/C9QI01005J.
    (62) Si, J.; Zheng, Q.; Chen, H.; Lei, C.; Suo, Y.; Yang, B.; Zhang, Z.; Li, Z.; Lei, L.; Hou, Y.; et al. Scalable Production of Few-Layer Niobium Disulfide Nanosheets via Electrochemical Exfoliation for Energy-Efficient Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces 2019, 11 (14), 13205-13213. DOI: 10.1021/acsami.8b22052.
    (63) Yu, Z.-Y.; Lang, C.-C.; Gao, M.-R.; Chen, Y.; Fu, Q.-Q.; Duan, Y.; Yu, S.-H. Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy & Environmental Science 2018, 11 (7), 1890-1897, 10.1039/C8EE00521D. DOI: 10.1039/C8EE00521D.
    (64) Xiao, C.; Li, S.; Zhang, X.; MacFarlane, D. R. MnO2/MnCo2O4/Ni heterostructure with quadruple hierarchy: a bifunctional electrode architecture for overall urea oxidation. Journal of Materials Chemistry A 2017, 5 (17), 7825-7832, 10.1039/C7TA00980A. DOI: 10.1039/C7TA00980A.
    (65) Xu, H.; Ye, K.; Zhu, K.; Yin, J.; Yan, J.; Wang, G.; Cao, D. Efficient bifunctional catalysts synthesized from three-dimensional Ni/Fe bimetallic organic frameworks for overall urea electrolysis. Dalton Transactions 2020, 49 (17), 5646-5652, 10.1039/D0DT00605J. DOI: 10.1039/D0DT00605J.
    (66) Zhu, D.; Guo, C.; Liu, J.; Wang, L.; Du, Y.; Qiao, S.-Z. Two-dimensional metal–organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chemical Communications 2017, 53 (79), 10906-10909, 10.1039/C7CC06378D. DOI: 10.1039/C7CC06378D.
    (67) Liu, T.; Liu, D.; Qu, F.; Wang, D.; Zhang, L.; Ge, R.; Hao, S.; Ma, Y.; Du, G.; Asiri, A. M.; et al. Enhanced Electrocatalysis for Energy-Efficient Hydrogen Production over CoP Catalyst with Nonelectroactive Zn as a Promoter. Advanced Energy Materials 2017, 7 (15), 1700020, https://doi.org/10.1002/aenm.201700020. DOI: https://doi.org/10.1002/aenm.201700020 (acccessed 2023/01/23).
    (68) Chen, S.; Duan, J.; Vasileff, A.; Qiao, S. Z. Size Fractionation of Two-Dimensional Sub-Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. Angewandte Chemie International Edition 2016, 55 (11), 3804-3808, https://doi.org/10.1002/anie.201600387. DOI: https://doi.org/10.1002/anie.201600387 (acccessed 2023/01/23).
    (69) Zhang, J.-Y.; He, T.; Wang, M.; Qi, R.; Yan, Y.; Dong, Z.; Liu, H.; Wang, H.; Xia, B. Y. Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array. Nano Energy 2019, 60, 894-902. DOI: https://doi.org/10.1016/j.nanoen.2019.04.035.
    (70) Zhu, W.; Yue, Z.; Zhang, W.; Hu, N.; Luo, Z.; Ren, M.; Xu, Z.; Wei, Z.; Suo, Y.; Wang, J. Wet-chemistry topotactic synthesis of bimetallic iron–nickel sulfide nanoarrays: an advanced and versatile catalyst for energy efficient overall water and urea electrolysis. Journal of Materials Chemistry A 2018, 6 (10), 4346-4353, 10.1039/C7TA10584C. DOI: 10.1039/C7TA10584C.
    (71) Wang, L.; Ren, L.; Wang, X.; Feng, X.; Zhou, J.; Wang, B. Multivariate MOF-Templated Pomegranate-Like Ni/C as Efficient Bifunctional Electrocatalyst for Hydrogen Evolution and Urea Oxidation. ACS Applied Materials & Interfaces 2018, 10 (5), 4750-4756. DOI: 10.1021/acsami.7b18650.
    (72) Huang, J.; Hu, Q.; Guo, X.; Zeng, Q.; Wang, L. Rethinking Co(CO3)0.5(OH)•0.11H2O: a new property for highly selective electrochemical reduction of carbon dioxide to methanol in aqueous solution. Green Chemistry 2018, 20 (13), 2967-2972, 10.1039/C7GC03744A. DOI: 10.1039/C7GC03744A.
    (73) Periasamy, A. P.; Ravindranath, R.; Senthil Kumar, S. M.; Wu, W.-P.; Jian, T.-R.; Chang, H.-T. Facet- and structure-dependent catalytic activity of cuprous oxide/polypyrrole particles towards the efficient reduction of carbon dioxide to methanol. Nanoscale 2018, 10 (25), 11869-11880, 10.1039/C8NR02117A. DOI: 10.1039/C8NR02117A.
    (74) Meshitsuka, S.; Ichikawa, M.; Tamaru, K. Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxide. Journal of the Chemical Society, Chemical Communications 1974, (5), 158-159, 10.1039/C39740000158. DOI: 10.1039/C39740000158.
    (75) Alinajafi, H. A.; Ensafi, A. A.; Rezaei, B. Reduction of carbon dioxide to methanol on the surface of adenine functionalized reduced graphene oxide at a low potential. International Journal of Hydrogen Energy 2018, 43 (52), 23262-23274. DOI: https://doi.org/10.1016/j.ijhydene.2018.10.188.
    (76) Ensafi, A. A.; Alinajafi, H. A.; Jafari-Asl, M.; Rezaei, B. Self-assembled monolayer of 2-pyridinethiol@Pt-Au nanoparticles, a new electrocatalyst for reducing of CO2 to methanol. Journal of Electroanalytical Chemistry 2017, 804, 29-35. DOI: https://doi.org/10.1016/j.jelechem.2017.09.046.
    (77) Mou, S.; Wu, T.; Xie, J.; Zhang, Y.; Ji, L.; Huang, H.; Wang, T.; Luo, Y.; Xiong, X.; Tang, B.; et al. Boron Phosphide Nanoparticles: A Nonmetal Catalyst for High-Selectivity Electrochemical Reduction of CO2 to CH3OH. Advanced Materials 2019, 31 (36), 1903499, https://doi.org/10.1002/adma.201903499. DOI: https://doi.org/10.1002/adma.201903499 (acccessed 2023/04/03).
    (78) Summers, D. P.; Leach, S.; Frese, K. W. The electrochemical reduction of aqueous carbon dioxide to methanol at molybdenum electrodes with low overpotentials. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1986, 205 (1), 219-232. DOI: https://doi.org/10.1016/0022-0728(86)90233-0.
    (79) Yang, D.; Zhu, Q.; Chen, C.; Liu, H.; Liu, Z.; Zhao, Z.; Zhang, X.; Liu, S.; Han, B. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nature Communications 2019, 10 (1), 677. DOI: 10.1038/s41467-019-08653-9.
    (80) Sun, X.; Zhu, Q.; Kang, X.; Liu, H.; Qian, Q.; Zhang, Z.; Han, B. Molybdenum–Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol. Angewandte Chemie International Edition 2016, 55 (23), 6771-6775, https://doi.org/10.1002/anie.201603034. DOI: https://doi.org/10.1002/anie.201603034 (acccessed 2023/04/03).
    (81) Qu, J.; Zhang, X.; Wang, Y.; Xie, C. Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochimica Acta 2005, 50 (16), 3576-3580. DOI: https://doi.org/10.1016/j.electacta.2004.11.061.
    (82) Barton Cole, E. E.; Baruch, M. F.; L’Esperance, R. P.; Kelly, M. T.; Lakkaraju, P. S.; Zeitler, E. L.; Bocarsly, A. B. Substituent Effects in the Pyridinium Catalyzed Reduction of CO2 to Methanol: Further Mechanistic Insights. Topics in Catalysis 2015, 58 (1), 15-22. DOI: 10.1007/s11244-014-0343-z.
    (83) Yang, H.-P.; Yue, Y.-N.; Qin, S.; Wang, H.; Lu, J.-X. Selective electrochemical reduction of CO2 to different alcohol products by an organically doped alloy catalyst. Green Chemistry 2016, 18 (11), 3216-3220, 10.1039/C6GC00091F. DOI: 10.1039/C6GC00091F.
    (84) Yang, H.-P.; Qin, S.; Wang, H.; Lu, J.-X. Organically doped palladium: a highly efficient catalyst for electroreduction of CO2 to methanol. Green Chemistry 2015, 17 (12), 5144-5148, 10.1039/C5GC01504A. DOI: 10.1039/C5GC01504A.
    (85) Lee, J. H. Q.; Lauw, S. J. L.; Webster, R. D. The electrochemical reduction of carbon dioxide (CO2) to methanol in the presence of pyridoxine (vitamin B6). Electrochemistry Communications 2016, 64, 69-73. DOI: https://doi.org/10.1016/j.elecom.2016.01.016.
    (86) Bandi, A. Electrochemical Reduction of Carbon Dioxide on Conductive Metallic Oxides. Journal of The Electrochemical Society 1990, 137 (7), 2157. DOI: 10.1149/1.2086903.
    (87) Johnson, R. W.; Hultqvist, A.; Bent, S. F. A brief review of atomic layer deposition: from fundamentals to applications. Materials Today 2014, 17 (5), 236-246. DOI: https://doi.org/10.1016/j.mattod.2014.04.026. Singh, J. A.; Yang, N.; Bent, S. F. Nanoengineering Heterogeneous Catalysts by Atomic Layer Deposition. Annual Review of Chemical and Biomolecular Engineering 2017, 8 (1), 41-62. DOI: 10.1146/annurev-chembioeng-060816-101547 (acccessed 2023/04/12). Sobel, N.; Hess, C. Nanoscale Structuring of Surfaces by Using Atomic Layer Deposition. Angewandte Chemie International Edition 2015, 54 (50), 15014-15021, https://doi.org/10.1002/anie.201503680. DOI: https://doi.org/10.1002/anie.201503680 (acccessed 2023/04/12). Mackus, A. J. M.; Bol, A. A.; Kessels, W. M. M. The use of atomic layer deposition in advanced nanopatterning. Nanoscale 2014, 6 (19), 10941-10960, 10.1039/C4NR01954G. DOI: 10.1039/C4NR01954G. Lakomaa, E.-L. Atomic layer epitaxy (ALE) on porous substrates. Applied Surface Science 1994, 75 (1), 185-196. DOI: https://doi.org/10.1016/0169-4332(94)90158-9.
    (88) Fonseca, J.; Lu, J. Single-Atom Catalysts Designed and Prepared by the Atomic Layer Deposition Technique. ACS Catalysis 2021, 11 (12), 7018-7059. DOI: 10.1021/acscatal.1c01200.
    (89) Zhang, Z.; Feng, C.; Liu, C.; Zuo, M.; Qin, L.; Yan, X.; Xing, Y.; Li, H.; Si, R.; Zhou, S.; et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nature Communications 2020, 11 (1), 1215. DOI: 10.1038/s41467-020-14917-6.
    (90) Zhang, L.; Han, L.; Liu, H.; Liu, X.; Luo, J. Back Cover: Potential-Cycling Synthesis of Single Platinum Atoms for Efficient Hydrogen Evolution in Neutral Media (Angew. Chem. Int. Ed. 44/2017). Angewandte Chemie International Edition 2017, 56 (44), 13900-13900, https://doi.org/10.1002/anie.201709950. DOI: https://doi.org/10.1002/anie.201709950 (acccessed 2023/04/13).
    (91) Guo, J.; Liu, H.; Li, D.; Wang, J.; Djitcheu, X.; He, D.; Zhang, Q. A minireview on the synthesis of single atom catalysts. RSC Advances 2022, 12 (15), 9373-9394, 10.1039/D2RA00657J. DOI: 10.1039/D2RA00657J.
    (92) Wang, H.; Wang, Q.; Cheng, Y.; Li, K.; Yao, Y.; Zhang, Q.; Dong, C.; Wang, P.; Schwingenschlögl, U.; Yang, W.; et al. Doping Monolayer Graphene with Single Atom Substitutions. Nano Letters 2012, 12 (1), 141-144. DOI: 10.1021/nl2031629.
    (93) Liu, P.; Zhao, Y.; Qin, R.; Mo, S.; Chen, G.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D.; et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352 (6287), 797-801. DOI: 10.1126/science.aaf5251 From NLM.
    (94) Wei, H.; Huang, K.; Wang, D.; Zhang, R.; Ge, B.; Ma, J.; Wen, B.; Zhang, S.; Li, Q.; Lei, M.; et al. Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nature Communications 2017, 8 (1), 1490. DOI: 10.1038/s41467-017-01521-4.
    (95) Lakshmanan, K.; Huang, W.-H.; Chala, S. A.; Taklu, B. W.; Moges, E. A.; Lee, J.-F.; Huang, P.-Y.; Lee, Y.-C.; Tsai, M.-C.; Su, W.-N.; et al. Highly Active Oxygen Coordinated Configuration of Fe Single-Atom Catalyst toward Electrochemical Reduction of CO2 into Multi-Carbon Products. Advanced Functional Materials 2022, 32 (24), 2109310, https://doi.org/10.1002/adfm.202109310. DOI: https://doi.org/10.1002/adfm.202109310 (acccessed 2023/04/13).
    (96) Paddon, C. A.; Bhatti, F. L.; Donohoe, T. J.; Compton, R. G. Electrosynthetic reduction of 1-iodoadamantane forming 1,1′-biadamantane and adamantane in aprotic solvents: Insonation switches the mechanism from dimerisation to exclusive monomer formation. Ultrasonics Sonochemistry 2007, 14 (5), 502-508. DOI: https://doi.org/10.1016/j.ultsonch.2006.11.007.
    (97) Zeleke, T. S.; Tsai, M.-C.; Weret, M. A.; Huang, C.-J.; Birhanu, M. K.; Liu, T.-C.; Huang, C.-P.; Soo, Y.-L.; Yang, Y.-W.; Su, W.-N.; et al. Immobilized Single Molecular Molybdenum Disulfide on Carbonized Polyacrylonitrile for Hydrogen Evolution Reaction. ACS Nano 2019, 13 (6), 6720-6729. DOI: 10.1021/acsnano.9b01266. Tsai, M.-C.; Nguyen, T.-T.; Akalework, N. G.; Pan, C.-J.; Rick, J.; Liao, Y.-F.; Su, W.-N.; Hwang, B.-J. Interplay between Molybdenum Dopant and Oxygen Vacancies in a TiO2 Support Enhances the Oxygen Reduction Reaction. ACS Catalysis 2016, 6 (10), 6551-6559. DOI: 10.1021/acscatal.6b00600.
    (98) Ouyang, Y.; Shi, L.; Bai, X.; Li, Q.; Wang, J. Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts. Chemical Science 2020, 11 (7), 1807-1813, 10.1039/C9SC05236D. DOI: 10.1039/C9SC05236D. Chen, Z. W.; Chen, L. X.; Yang, C. C.; Jiang, Q. Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges. Journal of Materials Chemistry A 2019, 7 (8), 3492-3515, 10.1039/C8TA11416A. DOI: 10.1039/C8TA11416A.
    (99) Wang, F.-L.; Pang, L.-L.; Jiang, Y.-Y.; Chen, B.; Lin, D.; Lun, N.; Zhu, H.-L.; Liu, R.; Meng, X.-L.; Wang, Y.; et al. Simple synthesis of hollow carbon spheres from glucose. Materials Letters 2009, 63 (29), 2564-2566. DOI: https://doi.org/10.1016/j.matlet.2009.09.008.
    (100) Liu, J. Aberration-corrected scanning transmission electron microscopy in single-atom catalysis: Probing the catalytically active centers. Chinese Journal of Catalysis 2017, 38 (9), 1460-1472. DOI: https://doi.org/10.1016/S1872-2067(17)62900-0.
    (101) Tieu, P.; Yan, X.; Xu, M.; Christopher, P.; Pan, X. Directly Probing the Local Coordination, Charge State, and Stability of Single Atom Catalysts by Advanced Electron Microscopy: A Review. Small 2021, 17 (16), 2006482, https://doi.org/10.1002/smll.202006482. DOI: https://doi.org/10.1002/smll.202006482 (acccessed 2023/04/23).
    (102) Ogino, I. X-ray absorption spectroscopy for single-atom catalysts: Critical importance and persistent challenges. Chinese Journal of Catalysis 2017, 38 (9), 1481-1488. DOI: https://doi.org/10.1016/S1872-2067(17)62880-8.
    (103) Kale, M. J.; Christopher, P. Utilizing Quantitative in Situ FTIR Spectroscopy To Identify Well-Coordinated Pt Atoms as the Active Site for CO Oxidation on Al2O3-Supported Pt Catalysts. ACS Catalysis 2016, 6 (8), 5599-5609. DOI: 10.1021/acscatal.6b01128.
    (104) Thang, H. V.; Pacchioni, G.; DeRita, L.; Christopher, P. Nature of stable single atom Pt catalysts dispersed on anatase TiO2. Journal of Catalysis 2018, 367, 104-114. DOI: https://doi.org/10.1016/j.jcat.2018.08.025.
    (105) Flytzani-Stephanopoulos, M.; Gates, B. C. Atomically Dispersed Supported Metal Catalysts. Annual Review of Chemical and Biomolecular Engineering 2012, 3 (1), 545-574. DOI: 10.1146/annurev-chembioeng-062011-080939 (acccessed 2023/04/22).
    (106) Ding, W.-C.; Gu, X.-K.; Su, H.-Y.; Li, W.-X. Single Pd Atom Embedded in CeO2(111) for NO Reduction with CO: A First-Principles Study. The Journal of Physical Chemistry C 2014, 118 (23), 12216-12223. DOI: 10.1021/jp503745c.
    (107) Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Physical Review B 1993, 47 (1), 558-561. DOI: 10.1103/PhysRevB.47.558. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters 1997, 78 (7), 1396-1396. DOI: 10.1103/PhysRevLett.78.1396.
    (108) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59 (3), 1758-1775. DOI: 10.1103/PhysRevB.59.1758.
    (109) Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science (New York, N.Y.) 2017, 355 (6321). DOI: 10.1126/science.aad4998 From NLM.
    (110) Liu, D.; Liu, T.; Zhang, L.; Qu, F.; Du, G.; Asiri, A. M.; Sun, X. High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. Journal of Materials Chemistry A 2017, 5 (7), 3208-3213, 10.1039/C6TA11127K. DOI: 10.1039/C6TA11127K.
    (111) Tong, Y.; Chen, P.; Zhang, M.; Zhou, T.; Zhang, L.; Chu, W.; Wu, C.; Xie, Y. Oxygen Vacancies Confined in Nickel Molybdenum Oxide Porous Nanosheets for Promoted Electrocatalytic Urea Oxidation. ACS Catalysis 2018, 8 (1), 1-7. DOI: 10.1021/acscatal.7b03177.
    (112) Hu, E.; Yao, Y.; Chen, Y.; Cui, Y.; Wang, Z.; Qian, G. Boosting hydrogen generation by anodic oxidation of iodide over Ni–Co(OH)2 nanosheet arrays. Nanoscale Advances 2021, 3 (2), 604-610, 10.1039/D0NA00847H. DOI: 10.1039/D0NA00847H.
    (113) Zhang, L.; Han, L.; Liu, H.; Liu, X.; Luo, J. Potential-Cycling Synthesis of Single Platinum Atoms for Efficient Hydrogen Evolution in Neutral Media. Angewandte Chemie International Edition 2017, 56 (44), 13694-13698. DOI: https://doi.org/10.1002/anie.201706921.
    (114) Luo, H.; Liu, Y.; Dimitrov, S. D.; Steier, L.; Guo, S.; Li, X.; Feng, J.; Xie, F.; Fang, Y.; Sapelkin, A.; et al. Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation. Journal of Materials Chemistry A 2020, 8 (29), 14690-14696, 10.1039/D0TA04431H. DOI: 10.1039/D0TA04431H. Zhao, L.; Zhang, Y.; Huang, L.-B.; Liu, X.-Z.; Zhang, Q.-H.; He, C.; Wu, Z.-Y.; Zhang, L.-J.; Wu, J.; Yang, W.; et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nature Communications 2019, 10 (1), 1278. DOI: 10.1038/s41467-019-09290-y. Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building Up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition Metal Single-Atom Catalysts. Journal of the American Chemical Society 2019, 141 (24), 9664-9672. DOI: 10.1021/jacs.9b03811 From NLM.
    (115) Fei, H.; Dong, J.; Arellano-Jiménez, M. J.; Ye, G.; Dong Kim, N.; Samuel, E. L. G.; Peng, Z.; Zhu, Z.; Qin, F.; Bao, J.; et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nature Communications 2015, 6 (1), 8668. DOI: 10.1038/ncomms9668. Malko, D.; Kucernak, A.; Lopes, T. In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts. Nature Communications 2016, 7 (1), 13285. DOI: 10.1038/ncomms13285. Li, Y.; Zhou, W.; Wang, H.; Xie, L.; Liang, Y.; Wei, F.; Idrobo, J.-C.; Pennycook, S. J.; Dai, H. An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nature Nanotechnology 2012, 7 (6), 394-400. DOI: 10.1038/nnano.2012.72. Genovese, C.; Schuster, M. E.; Gibson, E. K.; Gianolio, D.; Posligua, V.; Grau-Crespo, R.; Cibin, G.; Wells, P. P.; Garai, D.; Solokha, V.; et al. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nature Communications 2018, 9 (1), 935. DOI: 10.1038/s41467-018-03138-7.
    (116) Yang, Y.; Zhu, Y.; Ye, X.; Zhou, K.; Li, P.; Chen, H.; Dan, Y.; Yang, W.; Hou, H. One-Dimensional Mesoporous Anatase-TiO2/Rutile-TiO2/ZnTiO3 Triphase Heterojunction with Boosted Photocatalytic Hydrogen Production Activity. Catalysis Letters 2021, 151 (2), 359-369. DOI: 10.1007/s10562-020-03322-9. Zhang, L.; Jia, Y.; Gao, G.; Yan, X.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D.; Du, A.; et al. Graphene Defects Trap Atomic Ni Species for Hydrogen and Oxygen Evolution Reactions. Chem 2018, 4 (2), 285-297. DOI: https://doi.org/10.1016/j.chempr.2017.12.005.
    (117) Timoshenko, J.; Kuzmin, A. Wavelet data analysis of EXAFS spectra. Computer Physics Communications 2009, 180 (6), 920-925. DOI: https://doi.org/10.1016/j.cpc.2008.12.020.
    (118) Xia, Z.; Zhang, H.; Shen, K.; Qu, Y.; Jiang, Z. Wavelet analysis of extended X-ray absorption fine structure data: Theory, application. Physica B: Condensed Matter 2018, 542, 12-19. DOI: https://doi.org/10.1016/j.physb.2018.04.039.
    (119) Shahraei, A.; Moradabadi, A.; Martinaiou, I.; Lauterbach, S.; Klemenz, S.; Dolique, S.; Kleebe, H.-J.; Kaghazchi, P.; Kramm, U. I. Elucidating the Origin of Hydrogen Evolution Reaction Activity in Mono- and Bimetallic Metal- and Nitrogen-Doped Carbon Catalysts (Me-N-C). ACS Appl Mater Interfaces 2017, 9 (30), 25184-25193. DOI: 10.1021/acsami.7b01647 PubMed.
    (120) Mi, Y.; Hu, W.; Dan, Y.; Liu, Y. Synthesis of carbon micro-spheres by a glucose hydrothermal method. Materials Letters 2008, 62 (8), 1194-1196. DOI: https://doi.org/10.1016/j.matlet.2007.08.011.
    (121) Qiu, S.; Lyu, H.; Liu, J.; Liu, Y.; Wu, N.; Liu, W. Facile Synthesis of Porous Nickel/Carbon Composite Microspheres with Enhanced Electromagnetic Wave Absorption by Magnetic and Dielectric Losses. ACS Applied Materials & Interfaces 2016, 8 (31), 20258-20266. DOI: 10.1021/acsami.6b03159.
    (122) Kundu, S.; Wang, Y.; Xia, W.; Muhler, M. Thermal Stability and Reducibility of Oxygen-Containing Functional Groups on Multiwalled Carbon Nanotube Surfaces: A Quantitative High-Resolution XPS and TPD/TPR Study. The Journal of Physical Chemistry C 2008, 112 (43), 16869-16878. DOI: 10.1021/jp804413a.
    (123) Pels, J. R.; Kapteijn, F.; Moulijn, J. A.; Zhu, Q.; Thomas, K. M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995, 33 (11), 1641-1653. DOI: https://doi.org/10.1016/0008-6223(95)00154-6.
    (124) Yang, H. B.; Miao, J.; Hung, S.-F.; Chen, J.; Tao, H. B.; Wang, X.; Zhang, L.; Chen, R.; Gao, J.; Chen, H. M.; et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Science Advances 2016, 2 (4), e1501122. DOI: 10.1126/sciadv.1501122.
    (125) Wang, Y.; Jia, G.; Cui, X.; Zhao, X.; Zhang, Q.; Gu, L.; Zheng, L.; Li, L. H.; Wu, Q.; Singh, D. J.; et al. Coordination Number Regulation of Molybdenum Single-Atom Nanozyme Peroxidase-like Specificity. Chem 2021, 7 (2), 436-449. DOI: https://doi.org/10.1016/j.chempr.2020.10.023.
    (126) Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. ACS Catalysis 2014, 4 (11), 3957-3971. DOI: 10.1021/cs500923c.
    (127) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; Wiley, 2000.
    (128) Grgur, B. N.; Gvozdenović, M. M.; Stevanović, J. S.; Jugović, B. Z.; Trišović, L. T. Electrochemical oxidation of iodide in aqueous solution. Chemical Engineering Journal 2006, 124 (1), 47-54. DOI: https://doi.org/10.1016/j.cej.2006.08.028.
    (129) Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chemical Society Reviews 2014, 43 (2), 631-675, 10.1039/C3CS60323G. DOI: 10.1039/C3CS60323G.
    (130) Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.; Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nature Chemistry 2014, 6 (4), 320-324. DOI: 10.1038/nchem.1873.
    (131) Al-Rowaili, F. N.; Jamal, A.; Ba Shammakh, M. S.; Rana, A. A Review on Recent Advances for Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal–Organic Framework (MOF) and Non-MOF Catalysts: Challenges and Future Prospects. ACS Sustainable Chemistry & Engineering 2018, 6 (12), 15895-15914. DOI: 10.1021/acssuschemeng.8b03843.
    (132) Takahashi, K.; Hiratsuka, K.; Sasaki, H.; Toshima, S. ELECTROCATALYTIC BEHAVIOR OF METAL PORPHYRINS IN THE REDUCTION OF CARBON DIOXIDE. Chemistry Letters 1979, 8 (4), 305-308. DOI: 10.1246/cl.1979.305 (acccessed 2022/11/22).
    (133) Schlager, S.; Dumitru, L. M.; Haberbauer, M.; Fuchsbauer, A.; Neugebauer, H.; Hiemetsberger, D.; Wagner, A.; Portenkirchner, E.; Sariciftci, N. S. Electrochemical Reduction of Carbon Dioxide to Methanol by Direct Injection of Electrons into Immobilized Enzymes on a Modified Electrode. ChemSusChem 2016, 9 (6), 631-635, https://doi.org/10.1002/cssc.201501496. DOI: https://doi.org/10.1002/cssc.201501496 (acccessed 2022/12/17).
    (134) Zhang, G.; Wang, T.; Zhang, M.; Li, L.; Cheng, D.; Zhen, S.; Wang, Y.; Qin, J.; Zhao, Z.-J.; Gong, J. Selective CO2 electroreduction to methanol via enhanced oxygen bonding. Nature Communications 2022, 13 (1), 7768. DOI: 10.1038/s41467-022-35450-8.
    (135) Asadi, M.; Kumar, B.; Behranginia, A.; Rosen, B. A.; Baskin, A.; Repnin, N.; Pisasale, D.; Phillips, P.; Zhu, W.; Haasch, R.; et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nature Communications 2014, 5 (1), 4470. DOI: 10.1038/ncomms5470.
    (136) Malinski, T.; Hanley, P. M.; Kadish, K. M. Electrochemistry and spectroelectrochemistry of oxo- and peroxomolybdenum porphyrin complexes. Inorganic Chemistry 1986, 25 (18), 3229-3235. DOI: 10.1021/ic00238a028.
    (137) Nandi, G.; Sarkar, S. Solid phase synthesis and structural characterization of an oxo-molybdenum(V) porphyrin: triplet state ESR spectrum of μ-oxo bridged molybdenum(V) dimer. Journal of Porphyrins and Phthalocyanines 2014, 18 (04), 282-289. DOI: 10.1142/S1088424613501277 (acccessed 2023/04/29).
    (138) El-Nahass, M. M.; Zeyada, H. M.; Aziz, M. S.; Makhlouf, M. M. Optical absorption of tetraphenylporphyrin thin films in UV–vis-NIR region. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2005, 61 (13), 3026-3031. DOI: https://doi.org/10.1016/j.saa.2004.11.022.
    (139) Thomas, D. W.; Martell, A. E. Absorption Spectra of para-Substituted Tetraphenylporphines1,2. Journal of the American Chemical Society 1956, 78 (7), 1338-1343. DOI: 10.1021/ja01588a021.
    (140) Qiu, S.; Lyu, H.; Liu, J.; Liu, Y.; Wu, N.; Liu, W. Facile Synthesis of Porous Nickel/Carbon Composite Microspheres with Enhanced Electromagnetic Wave Absorption by Magnetic and Dielectric Losses. ACS Appl Mater Interfaces 2016, 8 (31), 20258-20266. DOI: 10.1021/acsami.6b03159 From NLM.
    (141) Wang, P.; Yang, H.; Tang, C.; Wu, Y.; Zheng, Y.; Cheng, T.; Davey, K.; Huang, X.; Qiao, S.-Z. Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling. Nature Communications 2022, 13 (1), 3754. DOI: 10.1038/s41467-022-31427-9.
    (142) Wu, Y.; Jiang, Z.; Lu, X.; Liang, Y.; Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 2019, 575 (7784), 639-642. DOI: 10.1038/s41586-019-1760-8.
    (143) Yi, J.-D.; Xie, R.; Xie, Z.-L.; Chai, G.-L.; Liu, T.-F.; Chen, R.-P.; Huang, Y.-B.; Cao, R. Highly Selective CO2 Electroreduction to CH4 by In Situ Generated Cu2O Single-Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding. Angewandte Chemie International Edition 2020, 59 (52), 23641-23648, https://doi.org/10.1002/anie.202010601. DOI: https://doi.org/10.1002/anie.202010601 (acccessed 2023/03/27).
    (144) Brownson, J. R. S.; Tejedor-Tejedor, M. I.; Anderson, M. A. Photoreactive Anatase Consolidation Characterized by FTIR Spectroscopy. Chemistry of Materials 2005, 17 (25), 6304-6310. DOI: 10.1021/cm051568f.
    (145) Wu, P.-Y.; Jiang, Y.-P.; Zhang, Q.-Y.; Jia, Y.; Peng, D.-Y.; Xu, W. Comparative study on arsenate removal mechanism of MgO and MgO/TiO2 composites: FTIR and XPS analysis. New Journal of Chemistry 2016, 40 (3), 2878-2885, 10.1039/C5NJ02358K. DOI: 10.1039/C5NJ02358K.
    (146) Brownson, J. R. S.; Tejedor-Tejedor, M. I.; Anderson, M. A. FTIR Spectroscopy of Alcohol and Formate Interactions with Mesoporous TiO2 Surfaces. The Journal of Physical Chemistry B 2006, 110 (25), 12494-12499. DOI: 10.1021/jp0614547.
    (147) Ko, J.; Kim, B.-K.; Han, J. W. Density Functional Theory Study for Catalytic Activation and Dissociation of CO2 on Bimetallic Alloy Surfaces. The Journal of Physical Chemistry C 2016, 120 (6), 3438-3447. DOI: 10.1021/acs.jpcc.6b00221.

    QR CODE