簡易檢索 / 詳目顯示

研究生: 劉怡汝
Yi-Ju Liu
論文名稱: 聚(氮-異丙基丙烯醯胺)與鲱魚精子DNA複合材料氫鍵作用力之特徵分析及其生物晶片上之應用
Characterization of Ploy(N-isopropylacrylamide) and Herring Sperm DNA Composite by Hydrogen Bonding for Application of Biochip
指導教授: 陳建光
Jem-Kun Chen
口試委員: 柯富祥
Fu-Hsiang Ko
邱顯堂
Hsien-Tang Chiu
楊銘乾
Ming-Chien Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 105
中文關鍵詞: 聚(氮-異丙基丙烯醯胺)去氧核醣核酸氫鍵作用力
外文關鍵詞: Poly(N-isopropylacrylamide), DNA, Hydrogen bonding
相關次數: 點閱:139下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚(氮-異丙基丙烯醯胺)〔Ploy(N-isopropylacrylamide),PNIPAAm〕具有溫度敏感性,能隨環境溫度變化而進行相對應的變化,為了製備具有溫敏性與生物相容性的複合材料,本研究透過氫鍵作用力將聚(氮-異丙基丙烯醯胺)/去氧核醣核酸(PNIPAAm/DNA)自組裝形成生物複合材料,並探討PNIPAAm與DNA不同混摻比例對生物複合材料氫鍵作用力與結合常數的影響。
    應用TGA與DSC對複合粉末進行熱分析,所有比例的PNIPAAm/DNA只有單一的玻璃轉移溫度且互溶成為一均勻相;使用UV測試PNIPAAm/DNA的氫鍵作用力,DNA含量越多則氫鍵作用力越大;使用FE-SEM、FEI-TEM觀測其結合型態與結構,結果發現DNA含量越多顆粒越容易產生聚集現象;經由CA量測發現在25℃時PNIPAAm/DNA隨DNA比例增加而顯現越疏水之特性,在45℃時則會隨DNA比例增加而顯現其越親水之特性;利用DLS探討溫度變化對PNIPAAm/DNA粒徑的影響,其粒徑會隨溫度升高而下降;以SDA進行電傳導性質的分析,結果發現PNIPAAm可增加DNA的導電率。
    最後使用點擊反應(Click Reaction)將PNIPAAm接枝於矽晶片表面,並探討PNIPAAm高分子刷在不同溫度下抓取DNA的能力,XPS結果指出,PNIPAAm在LCST以下抓取DNA的量多過於在LCST以上抓取的。透過測試生物複合材料的氫鍵作用力與結構型態變化,期望能成為一種應用於基因轉染與生物晶片的新型複合材料。


    Hydrogen bonding between complementary bases of nucleic acids plays a key role in self-aggregation processes and the spatial arrangement of biological macromolecules. This unique supramolecular performance of nucleic acids has stimulated us to explore the possibilities of utilizing these features for the development of advanced artificial systems for various applications.
    The hydrogen-bonding interactions and the biocomposites poly(N-isopropylacrylamide) (PNIPAAm) blended with herring sperm DNA were studied on the function of the blend composition by using thermogravimetry analyzer (TGA), differential scanning calorimetry (DSC), ultraviolet−visible (UV-Vis), scanning electron microscope (SEM), transmission electron microscope (TEM), contact angle (CA), dynamic light scattering (DLS) and semiconductor device analyzer (SDA).
    PNIPAAm/DNA exhibit a sharp but continuous transition at around 32 °C, from an elongated coil to a collapsed compact state. The PNIPAAm brushes were grafted on the silicon surface by using click reaction. According to the thermo-responsive property of PNIPAAm brushes, the capture-release application for herring sperm DNA was investigated by X-ray photoelectron spectroscopy (XPS).

    摘要 I Abstract III 目錄 IV 圖目錄 VIII 表目錄 XIII 1. 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 2 2. 文獻回顧 4 2.1. 聚(氮-異丙基丙烯醯胺) 4 2.2. 去氧核醣核酸(Deoxyribonucleic Acid) 14 2.3. 超分子化學(Supramolecular Chemistry) 18 2.4. 點擊化學 24 3. 實驗設備與方法 26 3.1. 實驗材料 26 3.1.1. PNIPAAm/DNA製備 26 3.1.2. PNIPAAm高分子刷製備 26 3.2. 實驗儀器 29 3.3. 實驗步驟 33 3.3.1. 實驗架構 33 3.3.2. PNIPAAm/DNA複合物混摻 34 3.3.3. DNA粉末製備 34 3.3.4. 矽晶片上接枝高分子刷製備 35 3.4. 儀器分析 40 3.4.1. 熱性質分析 40 3.4.2. 氫鍵作用力分析 40 3.4.3. 形貌分析 41 3.4.4. 親水性/疏水性分析 42 3.4.5. 粒徑分析 42 3.4.6. 電性分析 42 3.4.7. 元素分析 43 3.5. 儀器原理 44 3.5.1. 熱重量分析儀(TGA) 44 3.5.2. 微差掃描熱卡計(DSC) 45 3.5.3. 紫外光/可見光光譜儀(UV-Vis) 46 3.5.4. 高解析度場發射掃描式電子顯微鏡(FE-SEM) 47 3.5.5. 場發射穿透式電子顯微鏡(FEI-TEM) 48 3.5.6. 接觸角測量儀(CA) 49 3.5.7. 動態光散射粒徑分析儀(DLS) 50 3.5.8. 半導體參數分析儀(SDA) 51 3.5.9. X光光電子能譜(XPS) 52 4. 結果與討論 54 4.1. 熱性質分析 54 4.1.1. 熱重分析 54 4.1.2. 微差掃描熱分析 55 4.2. 氫鍵作用力分析 58 4.3. 低臨界溶液溫度測量 74 4.4. 形貌分析 78 4.4.1. 粉末形貌分析 78 4.4.2. 薄膜形貌分析 80 4.5. 親/疏水性分析 83 4.6. 粒徑分析 87 4.7. 電性分析 91 4.8. 元素分析 93 5. 結論 97 參考文獻 99

    1. Costa, E., Coelho, M., Ilharco, M. L., Aguiar-Ricardo, A., Hammond, T. P., “Tannic Acid Mediated Suppression of PNIPAAm Microgels Thermoresponsive Behavior”, Macromolecules, Vol. 44, No. 3, pp. 612–621 (2011)
    2. Chakraborty, S., Bishnoi, W. S., Pe’rez-Luna, H. V., “Gold Nanoparticles with Poly(N-isopropylacrylamide) Formed via Surface Initiated Atom Transfer Free Radical Polymerization Exhibit Unusually Slow Aggregation Kinetics”, The Journal of Physical Chemistry C, Vol. 114, No. 13, pp. 5947-5955 (2010)
    3. Dube, D., Francis, M., Leroux, J.-C., Winnik, F. M., “Preparation and Tumor Cell Uptake of Poly(N-isopropylacrylamide) Folate Conjugates”, Bioconjugate Chemistry, Vol. 13,No. 3, pp. 685–692 (2002)
    4. Eeckman, F., Moe‥s, A. J., Amighi, K., “Synthesis and Characterization of Thermosensitive Copolymers for Oral Controlled Drug Delivery”, European Polymer Journal, Vol. 40, No.4, pp. 873–881 (2004)
    5. Ramkissoon-Ganorkar, C., Liu, F., Baudys, M., Kim, W. S., “Modulating Insulin-release Profile from pH/thermosensitive Polymeric Beads Through Polymer Molecular Weight”, Journal of Controlled Release, Vol. 59, No. 3, pp. 287–298 (1999)
    6. Yamada, N., Okano, T., Sakai, H., Karikusaa, F., Sawasakia, Y., Sakurai, Y., “Thermo-responsive Polymeric Surfaces; Control of Attachmentand Detachment of Cultured Cells”, Die Makromolekulare Chemie Rapid Communications, Vol.11, pp. 571-576 (1990)
    7. Okano, T., Yamada, N., Okuhara, M., Sakai H., Sakurai, Y., “Mechanism of Cell Detachment from Temperature-modulated, Hydrophilic-hydrophobic Polymer Surfaces”, Biomateriols, Vol. 16, PP. 297-303(1995)
    8. Yamazaki, M., Tsuchida, M., Kobayashi, K., Takezawa, T., Mori, Y., “A Novel Method to Prepare Size-regulated Spheroids Composed of Human Dermal Fibroblasts”, Biotechnology and Bioengineering, Vol. 44, No. 1, pp. 38-44 (1994)
    9. Feng, L., Guoliang, T., Renxi Z., “Synthesis of Thermal Phase Separating Reactive Polymers and Their Applications in Immobilized Enzymes”, Polymer Journal, Vol. 25, No. 6, pp. 561-567 (1993)
    10. Cooperstein, A. M., Canavan, E. H., “Biological Cell Detachment from Poly(N-isopropylacrylamide) and Its Applications”, Langmuir, Vol. 26, No. 11, pp. 7695–7707 (2010)
    11. Dong, L. C., Hoffman, A. S., “Thermally Reversible Hydrogels: III. Immobilization of Enzymes for Feedback Reaction Control”, Journal of Controlled Release, Vol. 4, No. 3, pp. 223-227 (1986)
    12. Bisht,H. S., Manickam, D. S., You, Y., Oupicky D., “Temperature-Controlled Properties of DNA Complexes with Poly(ethylenimine)-graft-poly(N-isopropylacrylamide)”, Biomacromolecules, Vol. 7, No. 4, pp. 1169–1178 (2006)
    13. Iwataki,T., Yoshikawa, K., Kidoaki, S., Umeno, D., Kiji,M., Maeda, M., “Cooperativity vs. Phase Transition in a Giant Single DNA Molecule”, Journal of the American Chemical Society, Vol. 122, No. 41, PP. 9891-9896 (2000)
    14. Zhong, W., Yu, J.-S., Liang, Y., “Chlorobenzylidine–Herring Sperm DNA Interaction: Binding Mode and Thermodynamic Studies”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 59, No. 6, pp. 1281-1288 (2003)
    15. Zhang, Z. L., Tang, G.-Q., “The Binding Properties of Photosensitizer Methylene Blue to Herring Sperm DNA: a Spectroscopic Study”, Journal of Photochemistry and Photobiology B: Biology, Vol. 74, No. 2-3, pp. 119-125 (2004)
    16. Anslyn, V. E., “Supramolecular Analytical Chemistry”, The Journal of Organic Chemistry, Vol. 72, No. 3, pp. 687-699 (2007)
    17. Guo, L., Sato, H., Hashimoto, T., Ozaki, Y.,“FTIR Study on Hydrogen-Bonding Interactions in Biodegradable Polymer Blends of Poly(3-hydroxybutyrate) and Poly(4-vinylphenol)”, Macromolecules, Vol. 43, No. 8, pp. 3897–3902 (2010)
    18. Lutz, J.-F., Thunemann, F. A., Rurack, K., “DNA-like “Melting” of Adenine- and Thymine-Functionalized Synthetic Copolymers”, Macromolecules, Vol. 38, No. 20,pp. 8124-8126 (2005)
    19. Pan, P., Fujita, M., Ooi, W.-Y., Sudesh, K., Takarada, T., Goto, A., Maeda, M., “DNA-functionalized Thermoresponsive Bioconjugates Synthesized via ATRP and Click Chemistry”, Polymer, Vol. 52, No. 4, pp. 895-900 (2011)
    20. Chen, Y., Dong, C.-M., “pH-Sensitive Supramolecular Polypeptide-Based Micelles and Reverse Micelles Mediated by Hydrogen-Bonding Interactions or Host-Guest Chemistry: Characterization and In Vitro Controlled Drug Release”, The Journal of Physical Chemistry B, Vol. 114, No. 22, pp. 7461-7468 (2010)
    21. Chen, Y., Ding, D., Mao, Z., He, Y., Hu, Y., Wu, W., Jiang, X., “Synthesis of Hydroxypropylcellulose-poly(acrylic acid) Particles with Semi-Interpenetrating Polymer Network Structure”, Biomacromolecules, Vol. 9, No. 10, pp. 2609–2614 (2008)
    22. Matsuno, H., Nakahara, J.-I., Tanaka, K., “Dynamic Mechanical Properties of Solid Films of Deoxyribonucleic Acid”, Biomacromolecules, Vol. 12, No. 1, pp. 173-178 (2011)
    23. Hong, C.-Y., You, Y.-Z., Pan, C.-Y., “Synthesis of Water-Soluble Multiwalled Carbon Nanotubes with Grafted Temperature-Responsive Shells by Surface RAFT Polymerization”, Chemistry of Materials, Vol. 17, No. 9, pp. 2247-2254 (2005)
    24. Wang, W., Tian, X., Feng, Y., Cao, B., Yang, W., Zhang, L., “Thermally On-Off Switching Membranes Prepared by Pore-Filling Poly(N-isopropylacrylamide) Hydrogels”, Industrial & Engineering Chemistry Research, Vol. 49, No. 4, pp. 1684-1690 (2010)
    25. Hsu, W.-P., “Miscibility Enhancement on the Immiscible Poly (vinyl pyrrolidone) and Poly (ethyl methacrylate) with Poly (vinyl phenol)”, Journal of Applied Polymer Science, Vol. 100, No. 2, pp. 1205-1213 (2006)
    26. Kuo, S.-W., Cheng, R.-S., “DNA-like Interactions Enhance the Miscibility of Supramolecular Polymer Blends”, Polymer, Vol. 50, No.1, pp. 177-188 (2009)
    27. Creutz, C., Chou, H. M., “Binding of Catechols to Mononuclear Titanium(IV) and to 1- and 5-nm TiO2 Nanoparticles”, Inorganic Chemistry, Vol. 47, No. 9, pp. 3509-3514 (2008)
    28. Jankovic, A. I., Saponjic, V. Z., Comor, I. M., Nedeljkovic, M. J., “Surface Modification of Colloidal TiO2 Nanoparticles with Bidentate Benzene Derivatives”, The Journal of Physical Chemistry C, Vol. 113, No. 29, pp. 12645-12652 (2009)
    29. Lusancay, C. G., Norvez, S., Iliopoulos, I., “Temperature-Controlled Release of Catechol Dye in Thermosensitive Phenylboronate-Containing Copolymers: A Quantitative Study”, European Polymer Journal, Vol. 46, No. 6, pp. 1367-1373 (2010)
    30. Lee, C.-F., Lin, C.-C., Chien, C.-A., Chiu, W.-Y., “Thermosensitive and Control Release Behavior of Poly(N-isopropylacrylamide-co-acrylic acid)/nano-Fe3O4 Magnetic Composite Latex Particle that is Synthesized by Novel Method”, European Polymer Journal, Vol. 44, No. 9, pp. 2768-2776 (2008)
    31. Yang, L., Bai, S., Zhu, D., Yang, Z., Zhang, M., Zhang, Z., Chen, E., Cao, W., “Superhydrophobic Patterned Film Fabricated from DNA Assembly and Ag Deposition”, The Journal of Physical Chemistry C, Vol. 111, No. 1, pp. 431-434 (2007)
    32. Wei, H., Quan, C.-Y., Chang, C., Zhang, X.-Z., Zhuo, R.-X., “Preparation of Novel Ferrocene-Based Shell Cross-Linked Thermoresponsive Hybrid Micelles with Antitumor Efficacy”, The Journal of Physical Chemistry B, Vol. 114, No. 16, pp. 5309-5314 (2010)
    33. Chen, L., Liu, M., Bai, H., Chen, P., Xia, F., Han, D., Jiang, L., “Antiplatelet and Thermally Responsive Poly(N-isopropylacrylamide) Surface with Nanoscale Topography”, Journal of the American Chemical Society, Vol. 131, No. 30, pp. 10467–10472 (2009)
    34. Yu, Q., Zhang, Y., Chen, H., Zhou, F., Wu, Z., Huang, H., Brash, L. J., “Protein Adsorption and Cell Adhesion/Detachment Behavioron Dual-Responsive Silicon Surfaces Modified with Poly(N-isopropylacrylamide)-block-polystyrene Copolymer”, Langmuir, Vol. 26, No. 11, pp. 8582–8588 (2010)
    35. Endres, G. E., Cox, L. D., Singh, P. R. R., “Colloquium: The Quest for High-Conductance DNA”, Reviews of Modern Physics, Vol. 76, No. 1, pp. 195-214 (2004)

    無法下載圖示 全文公開日期 2016/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE