簡易檢索 / 詳目顯示

研究生: 曾思翰
Szu-Han Tseng
論文名稱: 改良型臉部特徵點擷取技術應用於眼睛辨識系統
An Ocular Recognition System using Modified Facial Landmarks Extraction
指導教授: 郭景明
Jing-Ming Guo
口試委員: 王乃堅
Nai-jian Wang
花凱龍
Kai-lung Hua
沈中安
Chung-an Shen
徐繼聖
Gee-sern Hsu
丁建均
Jian-jiun Ding
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 98
中文關鍵詞: 臉部特徵點擷取隨機森林線性迴歸眼睛辨識眼睛形狀人臉辨識
外文關鍵詞: facial landmarks extraction, random forest, linear regression, ocular recognition, eye shapes, face recognition
相關次數: 點閱:227下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一種改良式臉部特徵點擷取技術與具創新性的眼睛辨識系統,並將兩者技術結合實現一套高準確率且快速的身分辨識系統。
在臉部特徵點擷取方面,透過改進隨機森林的分割法則與特徵的擷取,使其能更準確的將樣本分群,使線性迴歸能更精準的估測其偏移量,這些都反映在實驗數據上,透過兩者技術結合與數量龐大的資料庫訓練,使其能抵抗光源、角度等外在因素帶來的影響。
在眼睛辨識方面,透過幾何、紋理與雙眼皮特徵彼此間的搭配組合,並透過支持向量機訓練,使其能更準確的判斷出待測者的身份,使系統具有高準確率及低計算複雜度的表現。且其資料庫具有很高的容忍範圍,包含正常眼睛、眨眼,甚至是閉眼,都擁有很高的辨識準確率。
在實驗結果方面,針對臉部特徵點擷取技術,我們使用LFPW與Helen資料庫分別進行測試,並與前人技術進行比較,從實驗結果可以得知其表現程度都是最好的。而針對眼睛辨識系統,我們使用CMU PIE與Yale人臉資料庫分別進行測試並與前人技術比較,從結果可看出皆有良好的準確率。且由於系統具有高準確的特性,因此可被應用於安全與辨識系統中。


This thesis presents two strategies on ocular recognition system to achieve a high performance accuracy and low computational complexity. The first technique is the modified facial landmarks extraction which is the key aspect on feature extraction for identification system. The second strategy enables an innovative ocular recognition system.
In terms of the facial landmarks extraction, the former random forest is improved with the proposed angle-split tactic to reduce the error rate. On the other hand, the facial landmarks extraction requires an additional process for the suppression of the noise interference. In this thesis, Gaussian blur filter is employed to alleviate the noise effect and to achieve a low error rate.
In the ocular recognition system, the proposed method combines three various features, i.e., geometric, texture, and eye-fold texture, which can describe all bio-invariant properties of an ocular region. The support vector machine is then exploited to train a model to achieve a good recognition performance. As a result, the proposed system achieves a great flexibility in handling open eyes, blinking eyes, and closed eyes.
Experimental results validate the successfulness and effectiveness of the proposed method over two standard image databases, i.e., LFPW and Helen databases. The proposed method reduces the error rate on the facial landmarks extraction stage. The performance of proposed method is also examined and investigated over another two image databases, i.e., CMU and Yale databases, which consist of open-and-blinking eyes scenarios. As documented in the experimental results, the proposed method offers a promising result in terms of recognition rate, and outperforms the former schemes. Thus, the proposed system can be regarded as an effective candidate in the biometric applications requiring real-time processing.

中文摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖表索引 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文架構 2 第二章 文獻探討 3 2.1特徵擷取相關文獻 3 2.1.1 區域二元樣板(Local Binary Patterns) 3 2.1.2 方向梯度直方圖(Histogram of Oriented Gradient) 8 2.1.3 尺度不變特徵轉換(Scale-invariant Feature Transform) 10 2.2挑選特徵演算法相關文獻 14 2.2.1 降低特徵維度(Dimensionality Reduction) 14 2.2.2 循序前進演算法(Sequential Forward Selection, SFS) 16 2.2.3 循序後退演算法(Sequential Backward Selection, SBS) 17 2.2.4 循序前進浮動演算法(Sequential Forward Floating Selection, SFFS) 18 2.3 眼睛辨識相關文獻 19 2.4 臉部特徵點擷取相關文獻 24 第三章 改良型臉部特徵點擷取技術 29 3.1 隨機森林(Random Forest)演算法 29 3.1.1 原理 29 3.1.2 袋裝樹(Bagging-based tree) 31 3.2 以線性迴歸為基礎的臉部特徵點擷取演算法 32 3.2.1 區域二元特徵(Local Binary Features) 33 3.2.2 線性迴歸(Linear Regression) 36 3.3 演算法的改良 37 3.3.1 針對像素差特徵(Pixel-difference features) 38 3.3.2 針對分割法則(Split Rule) 38 第四章 眼睛辨識 42 4.1 系統結構 42 4.2 前處理 43 4.2.1 人臉偵測(Face Detection) 43 4.2.2 正規化(Normalization)及眼睛區域擷取(region of interest, ROI) 45 4.3 特徵擷取 48 4.3.1 幾何特徵(Geometric Features) 49 4.3.2 眼皮特徵(Single- and double-fold eyelids) 53 4.3.3 紋理特徵(Texture Features) 57 4.4 支持向量機(Support Vector Machine) 59 4.4.1 線性可分離(Linearly separable) 60 4.4.2 線性不可分離(Linearly non-separable) 63 第五章 實驗結果 65 5.1 改良型臉部特徵點擷取技術實驗結果 65 5.1.1 參數設定 65 5.1.2 資料庫 67 5.1.3 分割法則與特徵值擷取的差異對錯誤率的影響 68 5.1.4 他人技術比較 69 5.2 眼睛辨識實驗結果 70 5.2.1 參數最佳化 71 5.2.2 資料庫 74 5.2.3 他人技術比較 76 5.2.4 時間複雜度 79 第六章 結論與未來展望 80 參考文獻 81

[1] T. Ojala, M. Pietikinen and D. Harwood, “A comparative study of texture measures with classification with local binary patterns,” Pattern Recognition, vol. 29, no. 1, 1996.
[2] T. Ojala, M. Pietikainen and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987, Jul. 2002.
[3] N. Dalal and B. Triggs, “Histogram of Oriented Gradients for Human Detection,” IEEE Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886-893, June 2005.
[4] D. G. Lowe, “Object Recognition from Local Scale-Invariant Features,” IEEE International Conference on Computer Vision (ICCV), pp. 1150-1157, 1999.
[5] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Computer Vision, vol. 60, pp. 91-110, 2004.
[6] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” Fourth Alvey Vision Conference, pp. 147-151, 1988.
[7] P. Pudil, J. Novovicova and J. Kittler, “Floating search methods in feature selection,” Pattern Recognition Letters, vol. 15, pp. 1119-1125, Nov. 1994.
[8] P. Sinha, B. Ba;as, Y. Ostrovsky and R. Russel, “Face Recognition by Humans: Nineteen Results All Computer Vision Researchers Should Know About,” IEEE Proceedings, pp. 1948-1962, vol. 94, Nov. 2006.
[9] D. L. Woodard, S, Pundlik and P.Miller, “On the Fusion of Periocular and Iris Biometrics in Non-ideal Imagery,” IEEE International Conference on Pattern Recognition (ICPR), pp. 201-204, Aug. 2004.
[10] D. L. Woodard, S. J. Pindik, P. E. Miller and J. R. Lyle, “Appearance-based periocular features in the context of face and non-ideal iris recognition,” Signal Image and Video Processing, pp. 443-455, vol. 5, Nov. 2011.
[11] U. Park, R. R. Jillela, A. Ross and A. K. Jain, “Periocular Biometrics in the Visible Spectrum,” IEEE Trans. Information Forensics and Security, pp. 96-106, vol. 6, March 2011.
[12] P. Viola and M. Jones, “Rapid Object Detection using Boosted Cascade of Simple Features,” IEEE Computer Vision and Pattern Recognition (CVPR), pp. 511-518, vol. 1, 2001.
[13] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting,” Journal of Computer and System Science, pp. 119-139, 1997.
[14] L. Breiman, “Random Forests,” Machine Learning, vol. 45, pp. 5-32, Oct. 2001.
[15] T. K. Ho, “The random subspace method for constructing decision forests,” IEEE Trans. on Pattern Recognition and Machine Intelligence, vol. 20, pp. 832-844, Aug. 1998.
[16] L. Breiman, “Bagging predictors,” Machine Learning, pp. 123-140, 1996.
[17] S. Ren, X. Cao, Y. Wei and J. Sin, “Face Alignment at 3000 FPS via Regression Local Binary Features, ” IEEE Computer Vision and Pattern Recognition (CVPR), pp. 23-28, June 2014.
[18] M. H. Kutner, C. J. Nachtsheim, and J. Neter, Applied linear regression models. NY: McGraw-Hill, 2005.
[19] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman and N. Kumar, “Localization parts of faces using a consensus of exemplars,” IEEE Computer Vision and Pattern Recognition (CVPR), pp. 545-552, June 2011.
[20] T. Sim, S. Baker and M. Bsat, “The CMU Pose, Illumination, and Expression (PIE) Database,” IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46-51, May 2002.
[21] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-pie,” IEEE International Conference on Automatic Face and Gesture Recognition, pp. 1-8, Sep. 2008.
[22] B. Widrow, “Adaptive Filters I: Fundamentals,” Stanford Electronics Laboratories, Stanford, CA, 1966.
[23] S. Gupta, A. Routary, and A. Mukherjee, “A New Method for Edge Extraction in images using Local Form Factors,” Int. J Comput. Application (IJCA), vol. 21, no. 2, pp. 15–22, 2011.
[24] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, no. 3, pp. 273-297, Sep. 1995.
[25] X. Cao, Y. Wei, F. Wen, and J. Sun, “Face alignment by explicit shape regression,” IEEE Computer Vision and Pattern Recognition (CVPR), pp. 2887-2894, June, 2012.
[26] X. Xiong and F. D. L. Torre, “Supervised Descent Method and its Applications to Face Alignment,” IEEE Computer Vision and Pattern Recognition (CVPR), pp. 532-539, June, 2013.
[27] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang, “Interactive facial feature localization,” European Conference Computer Vision (ECCV), pp. 679-692, Oct. 2012.
[28] X. Zhu and D. Ramanan, “Face detection, pose estimation, and landmark localization in the wild,” IEEE Computer Vision and Pattern Recognition (CVPR), pp. 2879-2886, June, 2012.
[29] R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang and C. J. Lin, “LIBLINEAR: A Library for Large Linear Classification, ” Journal of Machine Learning Research, pp. 1871-1874, Aug. 2008.
[30] T. Sim, S. Baker and M. Bsat, “The CMU Pose, Illumination, and Expression (PIE) Database,” IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46-51, May 2002.
[31] Yale Face Database: http://vision.ucsd.edu/content/yale-face-database.
[32] V. Kazemi and J. Sullivan, “One Millisecond Face Alignment with an Ensemble of Regression Trees,” IEEE Computer Vision and Pattern Recognition (CVPR), pp. 1867-1874, June 2014.
[33] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou and M. Pantic, “300 Faces in-the-Wild Challenge: The first facial landmark location Challenge,” IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 397-403, Dec. 2013.
[34] S. Zhu, C. Li, C. C. Loy and X. Tang, “Face Alignment by Coarse-to-Fine Shape Searching,” IEEE Computer Vision and Pattern Recognition (CVPR), 2015.
[35] X. P. Burgos-Artizzu, P. Perona, and P. Dollar, “Robust face landmark estimation under occlusion,” IEEE International Conference on Computer Vision (ICCV), pp. 1513-1520, 2013.
[36] S. Milborrow and F. Nicolls, “Locating facial features with an extended active shape model,” European Conference Computer Vision (ECCV), 2008.
[37] G. Tzimiropoulos and M. Pantic, “Optimization problems for fast AAM fitting in-the-wild,” IEEE International Conference on Computer Vision, pp. 593-600, 2013.
[38] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-PIE,” Image and Vision Computing, 2009.

QR CODE