簡易檢索 / 詳目顯示

研究生: 葉幸哲
Xing-Zhe Ye
論文名稱: 基於多感測器訊號與機器學習技術之刀具磨耗分類與預測
Tool Wear Classification and Prediction based on Multiple Sensors and Machine Learning Techniques
指導教授: 劉孟昆
Meng-Kun Liu
口試委員: 藍振洋
Chen-Yang Lan
劉益宏
Yi-Hung Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 107
中文關鍵詞: 刀具磨耗特徵指標特徵提取特徵選擇特徵降維迴歸模型分類模型共線性診斷支持向量機隨機森林迴歸
外文關鍵詞: Tool wear, features indexes, feature extraction, feature selection, feature dimensionality reduction, regression model, classification model, collinearity diagnosis, support vector machine, random forest regression
相關次數: 點閱:204下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 X 第一章、緒論 1 1.1 研究背景與動機 1 1.2 論文架構 3 第二章、文獻回顧 4 2.1 刀具磨耗 4 2.2 特徵處理 5 2.2.1 特徵前處理 5 2.2.2 特徵提取 5 2.2.3 特徵選擇 6 2.3 機器學習 7 2.3.1 機器學習之分類 8 2.3.2 迴歸分析與預測 10 第三章、研究方法 11 3.1 實驗規劃 11 3.1.1 實驗設備與設置 11 3.1.2 刀具磨耗實驗 15 3.1.3 磨耗結果 17 3.1.4 實驗流程 18 3.2 特徵提取 20 3.2.1 時域特徵 20 3.2.2 頻域特徵 23 3.3 特徵選擇 24 3.3.1 變異數分析(analysis of variance, ANOVA) 24 3.3.2 皮爾森相關係數(Pearson correlation coefficient, PCC) 25 3.4 特徵降維 26 3.4.1 線性判別分析(Linear discriminant analysis, LDA) 26 3.4.2 主成分分析(principal component analysis, PCA) 27 3.5 共線性診斷 28 3.5.1 方差膨脹因子(variance inflation factor, VIF) 28 3.5.2 迴歸模型正規化 29 3.6 支持向量機(support vector machine, SVM) 31 3.7 隨機森林迴歸 35 第四章、分類結果分析 37 4.1 分類分析流程 37 4.1.1 無獨立特徵集之分析流程 38 4.1.2 有獨立特徵集之分析流程 40 4.2 ANOVA特徵選擇 42 4.2.1 ANOVA (無獨立特徵集) 42 4.2.2 ANOVA (有獨立特徵集) 45 4.3 特徵降維 48 4.3.1 PCA降維分析(無獨立特徵集) 48 4.3.2 PCA降維分析(有獨立特徵集) 49 4.3.3 LDA降維分析 50 4.4 分類結果 51 第五章、迴歸分析 55 5.1 迴歸分析流程 55 5.2 迴歸模型 57 5.3 線性迴歸模型分析 58 5.3.1 皮爾森相關係數(PCC) 58 5.3.2 VIF迴歸分析 60 5.3.3 LASSO迴歸分析 62 5.3.4 PCR分析 63 5.2.5 線性迴歸分析總結 65 5.4 非線性迴歸模型分析 66 5.4.1 VIF迴歸分析 66 5.4.2 LASSO迴歸分析 67 5.4.3 PCR分析 67 5.4.4 非線性迴歸分析總結 68 5.5 迴歸模型與機器學習模型比較 71 第六章、結果討論與未來展望 65 6.1 分類分析結果討論 65 6.2 迴歸分析結果討論 66 6.3 未來展望 68 第七章、參考文獻 69 附錄A、刀具磨耗圖 73 附錄B、各實驗皮爾森相關係數 74 附錄C、各實驗主成分累積貢獻比 77 附錄D、各實驗共線性診斷後平均刀具磨耗預測曲線 80 附錄E、混合特徵集特徵處理後結果 83

    [1]Vetrichelvan, G., Sundaram, S., Kumaran, S. S., & Velmurugan, P. (2015). An investigation of tool wear using acoustic emission and genetic algorithm. Journal of Vibration and Control, 21(15), 3061-3066.
    [2]Liu, C., Wang, G. F., & Li, Z. M. (2015). Incremental learning for online tool condition monitoring using Ellipsoid ARTMAP network model. Applied Soft Computing, 35, 186-198.
    [3]Byrne, G., Dornfeld, D., Inasaki, I., Ketteler, G., König, W., & Teti, R. (1995). Tool condition monitoring (TCM)—the status of research and industrial application. CIRP annals, 44(2), 541-567.
    [4]Pfeifer, T., & Wiegers, L. (2000). Reliable tool wear monitoring by optimized image and illumination control in machine vision. Measurement, 28(3), 209-218.
    [5]Cheng, W. N., Cheng, C. C., Lei, Y. H., & Tsai, P. C. (2020). Feature selection for predicting tool wear of machine tools. The International Journal of Advanced Manufacturing Technology, 111(5), 1483-1501.
    [6]Ghosh, N., Ravi, Y. B., Patra, A., Mukhopadhyay, S., Paul, S., Mohanty, A. R., & Chattopadhyay, A. B. (2007). Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mechanical Systems and Signal Processing, 21(1), 466-479.
    [7]Nouri, M., Fussell, B. K., Ziniti, B. L., & Linder, E. (2015). Real-time tool wear monitoring in milling using a cutting condition independent method. International Journal of Machine Tools and Manufacture, 89, 1-13.
    [8]Dimla Sr, D. E., & Lister, P. M. (2000). On-line metal cutting tool condition monitoring.: I: force and vibration analyses. International Journal of Machine Tools and Manufacture, 40(5), 739-768.
    [9]Shi, X., Wang, R., Chen, Q., & Shao, H. (2015). Cutting sound signal processing for tool breakage detection in face milling based on empirical mode decomposition and independent component analysis. Journal of Vibration and Control, 21(16), 3348-3358.
    [10]Nayak, S. C., Misra, B. B., & Behera, H. S. (2014). Impact of data normalization on stock index forecasting. International Journal of Computer Information Systems and Industrial Management Applications, 6(2014), 257-269.
    [11]Ahmad, T., & Aziz, M. N. (2019). Data preprocessing and feature selection for machine learning intrusion detection systems. ICIC Express Lett, 13(2), 93-101.
    [12]Caggiano, A. (2018). Tool wear prediction in Ti-6Al-4V machining through multiple sensor monitoring and PCA features pattern recognition. Sensors, 18(3), 823.
    [13]Zhou, Y., Sun, B., Sun, W., & Lei, Z. (2020). Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process. Journal of Intelligent Manufacturing, 1-12.
    [14]Zhang, K. F., Yuan, H. Q., & Nie, P. (2015). A method for tool condition monitoring based on sensor fusion. Journal of Intelligent Manufacturing, 26(5), 1011-1026.
    [15]Benkedjouh, T., Medjaher, K., Zerhouni, N., & Rechak, S. (2015). Health assessment and life prediction of cutting tools based on support vector regression. Journal of intelligent manufacturing, 26(2), 213-223.
    [16]Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-1182.
    [17]Neef, B., Bartels, J., & Thiede, S. (2018, July). Tool wear and surface quality monitoring using high frequency CNC machine tool current signature. In 2018 IEEE 16th International Conference on Industrial Informatics (INDIN) (pp. 1045-1050). IEEE.
    [18]Li, Z., Liu, R., & Wu, D. (2019). Data-driven smart manufacturing: tool wear monitoring with audio signals and machine learning. Journal of Manufacturing Processes, 48, 66-76.
    [19]Wu, D., Jennings, C., Terpenny, J., Gao, R. X., & Kumara, S. (2017). A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests. Journal of Manufacturing Science and Engineering, 139(7).
    [20]Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9, 381-386.
    [21]Raschka, S., & Mirjalili, V. (2019). Python machine learning: Machine learning and deep learning with Python, scikit-learn, and TensorFlow 2. Packt Publishing Ltd.
    [22]Liu, X. Y., Wu, J., & Zhou, Z. H. (2008). Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 539-550.4
    [23]Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study of the class imbalance problem in convolutional neural networks. Neural Networks, 106, 249-259.
    [24]Zhou, Z. H., & Liu, X. Y. (2005). Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on knowledge and data engineering, 18(1), 63-77.
    [25]Eitrich, T., & Lang, B. (2006). Efficient optimization of support vector machine learning parameters for unbalanced datasets. Journal of computational and applied mathematics, 196(2), 425-436.
    [26]Wong, T. T. (2015). Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognition, 48(9), 2839-2846.
    [27]Marcot, B. G., & Hanea, A. M. (2021). What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?. Computational Statistics, 36(3), 2009-2031.
    [28]Liu, M. K., Tseng, Y. H., & Tran, M. Q. (2019). Tool wear monitoring and prediction based on sound signal. The International Journal of Advanced Manufacturing Technology, 103(9), 3361-3373.
    [29]Geramifard, O., Xu, J. X., Zhou, J. H., Li, X., & Gan, O. P. (2012, July). Feature selection for tool wear monitoring: A comparative study. In 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA) (pp. 1230-1235). IEEE.
    [30]Kong, D., Chen, Y., & Li, N. (2018). Gaussian process regression for tool wear prediction. Mechanical systems and signal processing, 104, 556-574.
    [31]Shen, Y., Yang, F., Habibullah, M. S., Ahmed, J., Das, A. K., Zhou, Y., & Ho, C. L. (2021). Predicting tool wear size across multi-cutting conditions using advanced machine learning techniques. Journal of Intelligent Manufacturing, 32(6), 1753-1766.
    [32]Caggiano, A. (2018). Tool wear prediction in Ti-6Al-4V machining through multiple sensor monitoring and PCA features pattern recognition. Sensors, 18(3), 823.
    [33]ISO, I. (1989). 8688-2: 1989_Tool life testing in milling—Part 2: End milling. International Organization for Standardization. ISO.
    [34]張竣閔(2021)。基於擴展派克向量模數與支持向量機之感應馬達故障診斷。國立臺灣科技大學機械工程系研究所碩士論文,台北市。
    [35]Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
    [36]Akoglu, H. (2018). User's guide to correlation coefficients. Turkish journal of emergency medicine, 18(3), 91-93.
    [37]劉益宏 教授, ”人工智慧特論”上課講義, 國立台灣科技大學, 2022.
    [38]O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & quantity, 41(5), 673-690.
    [39]Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1), 1.
    [40]Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32

    無法下載圖示 全文公開日期 2027/08/09 (校內網路)
    全文公開日期 2027/08/09 (校外網路)
    全文公開日期 2027/08/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE