簡易檢索 / 詳目顯示

研究生: 張運旋
Yun-hsuan Chang
論文名稱: p型氮化鎵成長過程中添加三氯化鎵作為氫自由基捕捉劑之研究
Growth of p-GaN film by adding gallium trichloride as H scavenger in MOCVD system
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 黃鶯聲
Ying-Sheng Huang
陳隆建
Lung-Chien Chen
黃振斌
jenn-bin Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 122
中文關鍵詞: p型氮化鎵電洞濃度電阻率電洞遷移率三氯化鎵
外文關鍵詞: p-GaN, hole concentration, resistivity, mobility, gallium trichloride
相關次數: 點閱:370下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗是先分別於三種氣氛下以TMGa/Cp2Mg/NH3之MOCVD系統成長p型氮化鎵薄膜。首先,在全氮氣氣氛下成長時,發現成長壓力為75 torr時,可以成長出表面較為平坦的薄膜,但因薄膜電性仍未達到一般p型氮化鎵薄膜水準,所以嘗試改以氫氣作為原料載氣,來降低在全氮氣氣氛下成長時因雜質所造成的自我補償效應。於氫氣作為原料載氣氣氛下成長p型氮化鎵薄膜的過程中,需將薄膜成長溫度提高到1000 ℃才可獲得表面無六角形缺陷的p型氮化鎵薄膜,但因薄膜電阻率仍高達3.5 Ω-cm,所以考慮在全氫氣氣氛下成長p型氮化鎵薄膜。由實驗結果發現在全氫氣氣氛下成長p型氮化鎵薄膜時,必須再提高薄膜成長溫度到1030 ℃及增加Ⅴ/ Ⅲ族比至3758,才能避免薄膜表面形成六角形的缺陷。而經由電性量測發現,薄膜的電阻率的確可以降低至2.82 Ω-cm。最後利用添加三氯化鎵成長p型氮化鎵薄膜,發現於全氫氣氣氛下、[GaCl3]/[TMGa]分壓比為0.2時可成長出表面平坦及不需經後加熱處理即可得到電洞濃度2 × 1016 cm-3、電阻率13.2 Ω-cm及薄膜電洞遷移率為18.9 cm2/V-s的p型氮化鎵薄膜。而將此電性數據與之前我們在全氫氣氣氛下成長但未經過後加熱處理的p型氮化鎵薄膜電性相比 (載子濃度背景值為2 × 1016 cm-3)確實十分接近,由於我們添加GaCl3來成長p型氮化鎵薄膜時會蝕刻薄膜,若薄膜過薄時可能會導致電性量測不準,故所量測出來的數據仍需確認。未來將以厚度大於1μm的p-GaN的厚膜成長來評估GaCl3的添加效果。


p-GaN thin films were grown in three different ambient gases using TMGa, Cp2Mg and NH3 as Ga, Mg and N source, respectively. First, in H2 free ambient and growth pressure of 75 torr, p-GaN thin films had smoother surface, but the electrical properties film couldn’t use for LED device application. Second, for reducing self-compensating effect, H2 was used as carrier gas. The growth temperature had to be increased to 1000 ℃ to avoid trapezoidal defect forming on the film surface. After post annealing treatment, the resistivity of the thin film was still too high (3.5 Ω-cm). Third, when the film was grown at temperature of 1030 ℃, and Ⅴ/ Ⅲ ratio of 3758 in all H2 ambient, there was no trapezoidal defect forming on the surface. The resistivity could be reduced to 2.82 Ω-cm after post annealing treatment. Finally, p-GaN thin films were grown by adding GaCl3 in all H2 ambient. When [GaCl3]/[TMGa] ratio of 0.2 , it was obtained the hole concentration、resistivity and mobility was 2 × 1016 cm-3、13.2 Ω-cm and 18.9 cm2/V-s, respectively. However, the hole concentration was closed to background value (2 × 1016 cm-3). This value have to be checked by measuring thicker film (1μm).

中文摘要…………………………………………………………Ⅰ 英文摘要…………………………………………………………Ⅲ 誌謝………………………………………………………………Ⅴ 目錄……………………………………………………………VII 圖索引………………………………………………………………Ⅸ 表索引………………………………………………………………ⅩⅥ 第一章 緒論 1.1 氮化鎵(GaN)的發展及應用 1 1.2 研究背景 7 1.3 研究方向及目的……………………………………………… 9 第二章 實驗相關部份 2.1 實驗氣體及藥品………………………………………………16 2.2 實驗儀器及實驗方法 ……………………………………………20 2.2.1 實驗設備……………………………………………………20 2.2.2 實驗程序……………………………………………………22 2.2.3 分析儀器……………………………………………………27 第三章 結果與討論 3.1 在全氮氣氛下成長p型氮化鎵薄膜……………………………35 3.1.1 成長總壓對薄膜表面形態及電性的影響………………35 3.1.2 改變摻雜濃度比([Mg]/[Ga])對p型氮化鎵長膜形態的影響 …………………………………………………………………38 3.2 以氫氣作為原料載氣成長p型氮化鎵薄膜……………………51 3.2.1不同成長溫度對薄膜品質的影響…………………………51 3.2.2 不同摻雜濃度比([Mg]/[Ga])對p型氮化鎵薄膜磊晶品質及電性的影響………………………………………………………53 3.3 在全氫氣氣氛下成長p型氮化鎵薄膜……………………………72 3.3.1 在不同掺雜濃度比([Mg]/[Ga])下成長p型氮化鎵………72 3.3.2 不同Ⅴ/Ⅲ比對成長p型氮化鎵的效應…………………74 3.4 添加氫捕捉劑下成長p型氮化鎵薄膜……………………………99 第四章 結論…………………………………………………………116 參考文獻……………………………………………………………119 作者簡介………………………………………………………………122

參考文獻
[01] J. Wu, and W. Walukiewicz, Superlattices and Microstructures, Vol. 34, pp. 63-75 (2003).
[02] S. Nakamura, MRS Bulletin, Vol. 23, pp. 37+ (1998).
[03] I. Akasaki, H. Amano, N. Sawaki, and Y. Toyoda, Appl. Phys. Lett., Vol. 48, pp. 353-355 (1986).
[04] S. Nakamura, Jpn. J. Appl. Phys., Vol. 30, pp. L1705-L1707 (1991).
[05] S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Vol. 30, pp. L1708-L1771 (1991).
[06] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys., Vol. 37, pp. L316-L318 (1998).
[07] S. Nakamura, N. Iwawa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Vol. 31, pp. 1258-1266 (1992).
[08] H. Amano, I. Akasaki, T. Kozawa, K. Hiramatsu, N. Sawaki, K. Ikeda, and Y. Ishii, J. Lumin., Vol. 40-41, pp. 121-122 (1989).
[09] H. Amano, M. Kito, K. Hiramatsu, and I. Akaaki, Jpn. J. Appl. Phys., Vol. 28, pp. L2112-L2114 (1989).
[10] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett., Vol. 64, pp. 1687-1689 (1994).
[11] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Appl. Phys. Lett., Vol. 67, pp. 1868-1870 (1995).
[12] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett., Vol. 70, pp. 1417-1419 (1995).
[13] Y. Ohba, and A. Hatano, J. Crystal Growth, Vol. 145, pp. 214-218 (1994).
[14] C. J. sun, and M. Razeghi, Appl. Phys. Lett., Vol. 63, pp. 973-975 (1993).
[15] C. J. Eiting, P. A. Grudowski, and R. D. Dupuis, J. Crystal Growth, Vol. 195, pp. 340-345 (1998).
[16] J. Neugebauera, and Chris G. Van de Walleb, Appl. Phys. Lett., Vol. 68, pp. 1829-1831, (1996).
[17] William, A. Pryor, “Free Radical”(1966).
[18] E. H. Park, J. S. Park, T. K. Yoo, J. Crystal Growth, Vol. 272, pp. 426-431 (2004).
[19] 賴彥霖,“氮化銦鎵(類量子點)/氮化鎵多重量子井之微結構與光學性質之研究,”第4頁, 國立成功大學材料科學及工程學系95年博士論文, (2006).
[20] F. Berardini, V. Fiorentini, Phys. Rev., Vol. B57, pp. R9427-R9430, (1998).
[21] http://nina.ecse.rpi.edu/shur.
[22] L. Sugiura, M. Suzuki, and J. Nishio, Appl. Phys. Lett., Vol. 72, pp. 1748-1750 (1998).
[23] H. Tokunaga, A. Ubukata, Y. Yano, A. Yamaguchi, N. Akutsu, T. Yamasaki, K. Matsumoto, J. Of Crystal Growth, Vol. 272, pp. 348-352 (2004).
[24] O. Svenska, S. Suihkonena, T. Langa, H. Lipsanena, M. Sopanena, M. A. Odnoblyudovb, V. E. Bougrov, J. Crystal Growth, Vol. 298, pp. 811-814 (2007).
[25] S. Murugkar, R.Merlin, A. Botchkarev, A. Salvador, H. Morkoc, J. Appl. Phys., Vol. 77, pp. 6042-6043 (1995).
[26] Z. L. Weber, T. Tomaszewicz, D. Zakharov, J. Jasinski, and M. O’Keefe, Phys. Rev. Lett., Vol. 93, pp. 206102 (2004).

QR CODE