簡易檢索 / 詳目顯示

研究生: 洪逸展
Yi-Chan Hung
論文名稱: 以UV /TiO2程序光還原水溶液中溴酸鹽之研究
Photocatalytic Reduction of Bromate in Aqueous Phase by UV /TiO2 Process
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
劉志成
Jhy-Chern Liu
曾迪華
Dyi-Hwa Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 170
中文關鍵詞: 光觸媒催化還原溴酸鹽還原紫外光發光二極體週期照光動力學分析
外文關鍵詞: Photocatalytic reduction reactions, BrO3- photoreduction, Periodic illumination, UV-LED, Kinetic analysis
相關次數: 點閱:341下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用紫外光發光二極體為光源,藉由光觸媒催化提升水溶液中溴酸鹽的還原,探討各項實驗操作之變因(如:溫度、水溶液pH值、初始濃度、氮化碳添加量、自由基抑制劑、共存離子、重複性測試、光強度、照光週期、)對溴酸鹽的還原速率之影響。並透過BET、XRD、SEM、UV-vis DRS、界達電位和光致發光,進行光觸媒的物化特性之分析。
    研究結果表明,在酸性條件下,溴酸鹽的還原速率顯著增加。此外,在低光強度下,還原反應速率隨著光強度的提升而顯著提高,但在高光強度下反應速率的提升則會趨於平緩。由間歇照光實驗發現,在相同照明時間下,可以藉由改變佔空比的光暗期來分別達到提高還原效率或光子利用率的結果。發現在間歇照光下進行的還原實驗,其能源使用有明顯的減少,並達到節能的效果。
    觀察到吸附在二氧化鈦表面上的溴酸鹽幾乎被光還原為溴離子。此外,在連續照光以及間歇照光下操作之光觸媒還原溴酸鹽之行為符合Langmuir-Hinshewood動力模式。


    The photocatalytic reduction of BrO3- in aqueous solution was carried out under the UV-LED light source, the effects of various experimental operation variables on the reduction rate of bromate such as: light intensity, pH value of aqueous solution, initial concentration, periodic illumination, temperature, carbon nitride addition, radical inhibitor, co-existing ions, and recyclability test were also discussed. The characterizations of photocatalyst were analyzed by X-ray diffraction (XRD), Brunauer- Emmett-Teller surface area measurement (BET), field emission scanning electron microscope (FESEM), Fluorescence spectrophotometer (PL), zeta potential and UV-vis diffuse reflectance spectra (UV-vis DRS). The results showed that the reduction rate of BrO3- was significantly increased under acidic conditions. In addition, at low light intensity, the reduction reaction rate increased significantly with the increase of light intensity, but the increase of the reaction rate tended to be flat at high light intensity. From the periodic illumination experiments, it is found that under the same illumination time, the reduction efficiency or photonic efficiency can be improved by changing the light or dark period of the duty cycle, respectively. The reduction experiment carried out under periodic illumination can significantly reduce the energy usage and achieve the electric energy saving.
    It was observed that the BrO3- adsorbed on the TiO2 surface was almost photo reduced to Br-. In addition, the behavior of photocatalysts operating under continuous illumination as well as periodic illumination for BrO3- reduction conforms to the Langmuir-Hinshewood kinetic model.

    中文摘要 I Abstract II Acknowledgments III Table of Content V List of Figure VI List of Table XI List of Symbol XIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives and Scope 3 Chapter 2 Literature Review 5 2.1 Photolysis and Photocatalysis 5 2.1.1 Basic Properties of TiO2 5 2.1.2 Modification of TiO2 7 2.1.3 Photocatalysis Reaction Mechanisms and Kinetics 9 2.1.4 Fundamentals of Periodic Illumination for Photocatalysis 13 2.2 Photocatalytic Reduction of Bromate in Aqueous Solutions 16 2.2.1 Photoreduction of Bromate 16 2.2.2 Reaction Mechanism of Bromate 20 2.3 Operating Factors Affecting Photocatalysis Redox Reactions 22 2.3.1 Solution pH 22 2.3.2 Light Intensity 24 2.3.3 Initial Concentration of Bromate 25 2.3.4 Operating Factor Affecting Periodic Illumination for Photocatalysis 26 Chapter 3 Materials and Experiments 29 3.1 Materials 29 3.2 Experimental Instruments and Apparatus 30 3.2.1 Experimental Apparatus 30 3.2.2 Experimental Instruments 34 3.3 Experimental Procedures 36 3.3.1 Experimental Framework 36 3.3.2 Photocatalyst Synthesis 38 3.3.3 Background Experiments 39 3.3.4 Photocatalysis Reduction of Bromate under UV-LED Illumination 50 Chapter 4 Results and Discussion 51 4.1 Characterization of Photocatalyst 51 4.2 Photocatalysis Reduction of Bromate under Different Conditions 64 4.2.1 Photocatalysis Reduction of Bromate 64 4.2.2 Characterization of TiO2-Ti Foil after Reaction 65 4.2.3 Effect of Solution pH 69 4.2.4 Effect of Initial Concentration of Bromate 73 4.2.5 Effect of Temperature 77 4.2.6 Effect of Different g-C3N4 Dosage Modified TiO2 80 4.2.7 Effect of Co-Existing Ions 84 4.2.8 Effect of Radical Inhibitors 87 4.2.9 Recyclability Testing 90 4.3 Photocatalysis Reduction of Bromate under Different Illumination 95 4.3.1 Effect of Light Intensity under Continuous Illumination 95 4.3.2 Effect of γ Value under Periodic Illumination 100 4.3.3 Effect of τ Value under Periodic Illumination 108 4.4 Proposed Mechanisms and Kinetic Analysis 114 4.4.1 Proposed Mechanism 114 4.4.2 Kinetic Analysis 118 Chapter 5 Conclusions and Recommendations 133 Reference 139

    Afkhami, A., Madrakian, T., and Zarei, A. R., “Spectrophotometric Determination of Periodate, Iodate and Bromate Mixtures Based on Their Reaction with Iodide,” Anal. Sci., Vol. 17 (10), pp. 1199-1202 (2001)
    Aguedach, A., Brosillon, S., Morvan, J., and Lhadi, E., K., “Photocatalytic Degradation of Azo-Dyes Reactive Black 5 and Reactive yellow 145 in Water over a Newly Deposited Titanium Dioxide,” Appl. Catal. B, Vol. 57 (1), pp. 55-62 (2005)
    Behnajady, M., Modirshahla, N., and Hamzavi, R., “Kinetic Study on Photocatalytic Degradation of C.I. Acid Yellow 23 by ZnO Photocatalyst,” J. Hazard. Mater., Vol. 133 (1-3), pp. 226-232 (2006)
    Bell, S., Will, G., and Bell, J., “Light Intensity Effects on Photocatalytic Water Slitting with a Titania Catalyst,” Int. J. Hydrog. Energy, Vol. 38 (17), pp. 6938-6947 (2013)
    Beranek, R., “(Photo)electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials,” Adv. Phys. Chem., Vol. 2011, pp. 1-20 (2011)
    Bertus, L. M., and Carcel, R. A., “Prediction of TiO2 and WO3 Nanopowders Surface Charge by the Evaluation of Point of Zero Charge (Pzc) Environ,” Eng. Manage. J., Vol. 10 (8), pp. 1021-1029 (2011)
    Bhatia, V., and Dhir, A., “Transition Metal Doped TiO2 Mediated Photocatalytic Degradation of Anti-Inflammatory Drug under Solar Irradiations,” J. Environ. Chem. Eng., Vol. 4 (1), pp. 1267-1273 (2016)
    Bolton, J. R. G., Bircher, K. G., Tumas, W. and Tolman, C. A., “Figures-of-Merit for the Technical Development and Application of Advanced Oxidation Technologies for Both Electric- and Solar-driven System,” Pure Appl. Chem., Vol. 73, pp. 627-637 (2001)
    Boonprakob, N., Wetchakun, N., Phanichphant, S., Waxler, D., Sherrell, P., Nattestad, A., and Inceesungvorn, B., “Enhanced Visible-Light Photocatalytic Activity of g-C3N4/TiO2 films,” J. Colloid Interface Sci., Vol. 417, pp. 402-409 (2014)
    Buechler, K. J., Nam, C. H., Zawistowski, T. M., Noble, R. D., and Koval, C. A., “Design and Evaluation of a Novel-Controlled Periodic Illumination Reactor to Study Photocatalysis” Ind. Eng. Chem. Res., Vol. 38 (4), pp. 1258-1263 (1999)
    Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B., “Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atom, and Hydroxyl Radicals in Aqueous Solution,” J. Phys. Chem. Ref. Data, Vol. 17 (2), pp. 513-886 (1988)
    Chen, F., Yang, Q., Zhong, Y., An, H., Zhao, J., Xie, T., and Zeng, G., “Photo-Reduction of Bromate in Drinking Water by Metallic Ag and Reduced Graphene Oxide (RGO) Jointly Modified BiVO4 under Visible Light Irradiation,” Water Res., Vol. 101, pp. 555-563 (2016)
    Chen, H. W., Ku, Y. and Irawan, A., “Photodecomposition of o-cresol by UV-LED/TiO2 Process with Controlled Periodic Illumination,” chemosphere, Vol. 69, pp. 184-190 (2007a)
    Chen, H., Xu, Z., Wan, H., Zheng, J., Yin, D., and Zheng, S., “Aqueous Bromate Reduction by Catalytic Hydrogenation over Pd/Al2O3 Catalysts,” Appl. Catal. B, Vol. 96 (3-4), Vol. pp. 307-313 (2010)
    Chen, Z., Jin, J., Song, X., Wei, S., Zhang, L., and Zhang, S., “Effects of Low-Molecular-Weight Organics on the Photoreduction of Bromate in Water,” ACS ES&T Engineering, Vol. 1 (3), pp. 581-590 (2021)
    Connor, P. A., and McQuillan, A. J., “Phosphate Adsorption onto TiO2 from Aqueous Solutions: An in Situ Internal Reflection Infrared Spectroscopic Study,” Langmuir, Vol. 15 (8), pp. 2916-2921 (1999)
    Cornu, C. J. G., Colussi, A. J., and Hoffmann, M. R., “Quantum Yields of the Photocatalytic Oxidation of Formate in Aqueous TiO2 Suspensions under Continuous and Periodic Illumination,” J. Phys. Chem. B, Vol. 105, pp. 1351-1354 (2001)
    Cornu, C. J. G., Colussi, A. J., and Hoffmann, M. R., “Time Scales and pH Dependences of the Redox Processes Determining the Photocatalytic Efficiency of TiO2 Nanoparticles from Periodic Illumination Experiments in the Stochastic Regime”, J. Phys. Chem. B, Vol. 107, pp. 3156-3160 (2003)
    Deng, Y., “Developing a Langmuir-Type Excitation Equilibrium Equation to Describe the Effect of Light Intensity on the Kinetics of the Photocatalytic Oxidation,” Chem. Eng. J., Vol. 337, pp. 220-227 (2018)
    Dong, Z., Sun, F., Dong, W., and Jiang, C., “Catalytic Bromate Removal from Water by Using Activated Carbon Supported with Ruthenium (AC/Ru) Catalyst,” Environ. Eng. Sci., Vol. 35 (3), pp. 176-184 (2018)
    Dvoranová, D., Mazúr, M., Papailias, I., Giannakopoulou, T., Trapalis, C., and Brezová, V., “EPR Investigations of G-C3N4/TiO2 Nanocomposites,” Catalysts, Vol. 8 (2), pp. 47 (2018)
    Eglitis, R., Zukuls, A., Viter, R., and Šutka, A., Kinetics of TiO2 Photochromic Response in Different Hole Scavenging Solvents. Photochem. Photobiol. Sci., Vol. 19, pp. 1072-1077 (2020)
    Emeline, A. V., Ryabchuk, V., and Serpone, N., “Factors Affecting the Efficiency of A Photocatalyzed Process in Aqueous Metal-Oxide Dispersions. J. Photochem. Photobiol. A, Vol. 133 (1-2), pp. 89-97 (2000)
    Fu, M., Pi, J., Dong, F., Duan, Q., and Guo, H., “A Cost-Effective Solid-State Approach to Synthesize g-C3N4 Coated TiO2 Nanocomposites with Enhanced Visible Light Photocatalytic Activity,” Int. J. Photoenergy, Vol. 2013, pp. 1-7 (2013)
    Fujishima, A., and Honda, K, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, Vol. 238 (5358), pp. 37-38 (1972)
    Fujishima, A., Hashimoto, K., and Watanabe, T., “TiO2 Photocatalysis: Fundamentals and Applications,” BKC Incorporated, Tokyo, (1999)
    Gandhi, V. G., Mishra, M. K., and Joshi, P. A., “A Study on Deactivation and Regeneration of Titanium Dioxide during Photocatalytic Degradation of Phthalic Acid,” J. Ind. Eng. Chem., Vol. 18 (6), pp. 1902-1907 (2012)
    Giannakopoulou, T., Papailias, I., Todorova, N., Boukos, N., Liu, Y., Yu, J., and Trapalis, C., “Tailoring the Energy Band Gap and Edges’ Potentials of g-C3N4 /TiO2 Composite Photocatalysts for NOx Removal,” Chem. Eng. J., Vol. 310, pp. 571-580 (2017)
    Grela, M. A., and Colussi, A. J., “Kinetics of Stochastic Charge Transfer and Recombination Events in Semiconductor Colloids. Relevance to Photocatalysis Efficiency,” J. Phys. Chem., Vol. 100 (46), pp. 18214-18221 (1996)
    He, H., Cheng, Y., Yang, C., Zeng, G., Zhu, C., and Yan, Z., “Influences of Anion Concentration and Valence on Dispersion and Aggregation of Titanium Dioxide Nanoparticles in Aqueous Solutions,” J Environ Sci, Vol. 54, pp. 135-141 (2017)
    Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W., “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., Vol. 95 (1) pp. 69-96 (1995)
    Hou, W. M. and Ku, Y., “Photocatalytic Decomposition of Gaseous Isopropanol in a Tubular Optical Fiber Reactor under Periodic UV–LED Illumination,” J. Mol. Catal. A: Chem., Vol. 374-375, pp. 7-11 (2013)
    Humayun, M., Raziq, F., Khan, A., and Luo, W., “Modification Strategies of TiO2 for Potential Applications in Photocatalysis: A Critical Review,” Green Chem. Lett. Rev., Vol. 11 (2), pp. 86-102 (2018)
    Jaafar, N. F., Jalil, A. A., Triwahyono, S., Efendi, J., Mukti, R. R., Jusoh, R., and Suendo, V., “Direct in Situ Activation of Ag0 Nanoparticles in Synthesis of Ag/TiO2 and Its Photoactivity,” Appl. Surf. Sci., Vol. 338, pp. 75-84 (2015)
    Kang, S. A., Li, W., Lee, H. E., Phillips, B. L., and Lee, Y. J., “Phosphate Uptake by TiO2: Batch Studies and NMR Spectroscopic Evidence for Multisite Adsorption,” J. Colloid Interface Sci., Vol. 364 (2), pp. 455-461 (2011)
    Khalid, N. R., Majid, A., Tahir, M. B., Niaz, N. A., and Khalid, S., “Carbonaceous-TiO2 Nanomaterials for Photocatalytic Degradation of Pollutants: A Review,” Ceram. Int., Vol. 43 (17), pp. 14552-14571 (2017)
    Khedr, T., El-Sheikh, S., Ismail, A., Kowalska, E., and Bahnemann, D., “Photodegradation of Microcystin-LR Using Visible Light-Activated C/N-co-Modified Mesoporous TiO2 Photocatalyst,” Materials, Vol. 12 (7), pp. 1027 (2019)
    Kim, S. B., and Hong, S. C., “Kinetic Study for Photocatalytic Degradation of Volatile Organic Compounds in Air using Thin Film TiO2 Photocatalyst, “Appl. Catal. B, Vol. 35 (4), pp. 305-315 (2002)
    Klaewkla, R., Arend, M., and F., W., “A Review of Mass Transfer Controlling the Reaction Rate in Heterogeneous Catalytic Systems,” Intech, pp. 667-684 (2011)
    Korovin, E., Selishchev, D., Besov, A., and Kozlov, D., “UV-LED TiO2 Photocatalytic Oxidation of Acetone Vapor: Effect of High Frequency Controlled Periodic Illumination,” Appl. Catal. B, Vol. 63, pp. 143-149. (2015)
    Ku, S. C., “Simultaneous Photocatalytic Oxidation and Reduction of As(III) and Cr(VI) Species in Aqueous Solution using TiO2 Photocatalysts,” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2020)
    Ku, Y., and Jung, I. L., “Photocatalytic Reduction of Cr(VI) in Aqueous Solutions by UV Irradiation with the Presence of Titanium Dioxide,” Water Res., Vol. 35(1), pp. 135-142 (2001)
    Ku, Y., Yan, L.-M., and Luong, G. K. T., “Reduction of Dissolved Carbon Dioxide in Aqueous Solution by UV-LED/TiO2 Process under Periodic Illumination,” J. CO2 Util., Vol. 41, pp. 101283 (2020)
    Kumar, V., Wanchoo, R. K., and Toor, A. P., “Photocatalytic Reduction and Crystallization Hybrid System for Removal and Recovery of Lead (Pb). Ind. Eng. Chem. Res., Vol. 60 (24), pp. 8901-8910 (2021)
    Kwon, G., and Yoon, J., “Superoxide Anion Radical: Principle and Application,” Appl. Chem. Eng., Vol. 20 (6), pp. 593-602 (2009)
    Laxma Reddy, P. V., Kavitha, B., Kumar Reddy, P. A., and Kim, K.-H., “TiO2 -Based Photocatalytic Disinfection of Microbes in Aqueous Media: A Review,” Environ. Res., Vol. 154, pp. 296-303 (2017)
    Li, G., Wong, K. H., Zhang, X., Hu, C., Yu, J. C., Chan, R. C. Y., and Wong, P. K., “Degradation of Acid Orange 7 using Magnetic AgBr under Visible Light: The Roles of Oxidizing Species,” Chemosphere, Vol. 76(9), pp. 1185-1191 (2009)
    Li, R., Li, T., and Zhou, Q., “Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment-A Review,” Catalysts, Vol. 10 (7), pp. 804 (2020)
    Liang, R., Li Chun Fong, L. C. M., Arlos, M. J., Van Leeuwen, J., Shahnam, E., Peng, P., and Zhou, Y. N., “Photocatalytic degradation using one-dimensional TiO2 and Ag-TiO2 nanobelts under UV-LED controlled periodic illumination,” J. Environ. Chem. Eng., Vol. 5 (5), pp. 4365-4373 (2017)
    Lim, T. H., Jeong, S. M., Kim, S. D., and Gyenis, J., “Photocatalytic Decomposition of NO by TiO2 Particles,” J. Photochem. Photobiol. A, Vol. 134 (3), pp. 209-217 (2000)
    Lin, K.-Y. A., Lin, C.-H., Chen, S.-Y., and Yang, H., “Enhanced Photocatalytic Reduction of Concentrated Bromate in the Presence of Alcohols,” Chem. Eng. J., Vol. 303, pp. 596-603 (2016)
    Lin, T.-H., Chang, Y.-H., Chiang, K.-P., Wang, J.-C., and Wu, M.-C., “Nanoscale Multidimensional Pd/TiO2/g-C3N4 Catalyst for Efficient Solar-Driven Photocatalytic Hydrogen Production,” Catalysts, Vol. 11(1), 59 (2021)
    Lv, X., Hu, Y., Tang, J., Sheng, T., Jiang, G., and Xu, X., “Effects of Co-existing Ions and Natural Organic Matter on Removal of Chromium (VI) from Aqueous Solution by Nanoscale Zero Valent Iron (nZVI)-Fe3O4 Nanocomposites,” Chem. Eng. J., Vol. 218, pp. 55-64 (2013)
    Ma, J., Wang, C., and He, H. “Enhanced Photocatalytic Oxidation of NO Over g-C3N4-TiO2 under UV and Visible Light,” Appl. Catal. B, Vol. 184, pp. 28-34 (2016).
    Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., and Gernjak, W., “Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends. Catal. Today, Vol. 147 (1), pp. 1-59 (2009)
    Marks, R., Yang, T., Westerhoff, P., and Doudrick, K., “Comparative Analysis of the Photocatalytic Reduction of Drinking Water Oxyoanions using Titanium Dioxide,” Water Res., Vol. 104, pp. 11-19 (2016)
    Martín-Sómer, M., Pablos, C., van Grieken, R., and Marugán, J., “Influence of Light Distribution on the Performance of Photocatalytic Reactors: LED vs Mercury lamps,” Appl. Catal. B, Vol. 215, pp. 1-7 (2017)
    Mills, A., Belghazi, A., and Rodman, D., “Bromate Removal from Drinking Water by Semiconductor Photocatalysis,” Water Res., Vol. 30 (9), pp. 1973-1978 (1996)
    Morais, D. F. S., Boaventura, R. A. R., Moreira, F. C., and Vilar, V. J. P., “Advances in Bromate Reduction by Heterogeneous Photocatalysis: The use of a Static mixer as Photocatalyst Support,” Appl. Catal. B, Vol. 249, pp. 322-332 (2019)
    Mosleh, S., Rahimi, M. R., Ghaedi, M., Dashtian, K., and Hajati, S.,” Sonochemical-assisted synthesis of CuO/Cu2O/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization,” Ultrason Sonochem, Vol. 40, pp. 601-610 (2018)
    Noguchi, H., Nakajima, A., Watanabe, T., and Hashimoto, K., “Design of a Photocatalyst for Bromate Decomposition: Surface Modification of TiO2 by Pseudo-boehmite,” Environ. Sci. Technol., Vol. 37 (1), pp. 153-157 (2003)
    Noguchi, H., Nakajima, A., Watanabe, T., and Hashimoto, K., “Removal of Bromate Ion from Water using TiO2 and Alumina-Loaded TiO2 Photocatalysts” Water Sci. Technol., Vol. 46 (11-12), pp. 27-31 (2002)
    Pang, Y. L., Law, Z. X., Lim, S., Chan, Y. Y., Shuit, S. H., Chong, W. C., and Lai, C. W., “Enhanced Photocatalytic Degradation of Methyl Orange by Coconut Shell–Derived Biochar Composites under Visible LED Light Irradiation,” Environ. Sci. Pollut. Res., Vol. 28 (21), pp. 27457-27473 (2021)
    Park, D., Yun, Y.-S., Lee, H. W., and Park, J. M., “Advanced Kinetic Model of the Cr(VI) Removal by Biomaterials at Various pHs and Temperatures,” Bioresour. Technol., Vol. 99 (5), pp. 1141-1147 (2008)
    Paschoal, F. M. M., Pepping, G., Zanoni, M. V. B., and Anderson, M. A., “Photoelectrocatalytic Removal of Bromate Using Ti/TiO2 Coated as a Photocathode,” Environ. Sci. Technol., Vol.43 (19), pp.7496-7502 (2009)
    Payne, T. E., Brendler, V., Ochs, M., Baeyens, B., Brown, P. L., Davis, J. A., and Altmann, S., “Guidelines for Thermodynamic Sorption Modelling in the Context of Radioactive Waste Disposal. Environ Model Softw, Vol. 42, pp. 143-156 (2013)
    Pinkernell, U., and von Gunten, U.,” Bromate Minimization during Ozonation: Mechanistic Considerations,” Environ. Sci. Technol., Vol. 35 (12), pp. 2525-2531 (2001)
    Ren, B., Wang, T., Qu, G., Deng, F., Liang, D., Yang, W., and Liu, M., “In Situ Synthesis of g-C3N4/TiO2 Heterojunction Nanocomposites as a Highly Active Photocatalyst for the Degradation of Orange II under Visible Light Irradiation,” Environ. Sci. Pollut. Res., Vol. 25 (19), pp. 19122-19133 (2018)
    Sakthivel, S., Shankar, M., Palanichamy, M., Arabindoo, B., Bahnemann, D., and Murugesan, V., “Enhancement of Photocatalytic Activity by Metal Deposition: Characterisation and Photonic Efficiency of Pt, Au and Pd Deposited on TiO2 Catalyst,” Water Res., Vol. 38 (13), pp. 3001-3008 (2004)
    Samad, A., Furukawa, M., Katsumata, H., Suzuki, T., and Kaneco, S., “Photocatalytic Oxidation and Simultaneous Removal of Arsenite with CuO/ZnO Photocatalyst,” J. Photochem. Photobiol. A, Vol. 325, pp. 97-103 (2016)
    Santos, S. G. S., Paulista, L. O., Silva, T. F. C. V., Dias, M. M., Lopes, J. C. B., Boaventura, R. A. R., and Vilar, V. J. P., “Intensifying Heterogeneous TiO2 Photocatalysis For Bromate Reduction Using the Netmix Photoreactor,” Sci. Total Environ., Vol. 664, pp. 805-816 (2019)
    Sauer, T., Cesconeto Neto, G., José, H., and Moreira, R. F. P., “Kinetics of Photocatalytic Degradation of Reactive Dyes in a TiO2 Slurry Reactor,” J. Photochem. Photobiol. A, Vol. 149 (1-3), pp. 147-154 (2002)
    Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., and Bahnemann, D. W., “Understanding TiO2 Photocatalysis: Mechanisms and Materials,” Chem. Rev., Vol. 114(19), pp. 9919-9986 (2014)
    Sczechowski, J. G., Koval, C. A., and Noble, R. D., “Evidence of Critical Illumination and Dark Recovery Times for Increasing the Photoefficiency of Aqueous Heterogeneous Photocatalysis,” J. Photochem. Photobiol. A, Vol. 74 (2-3), pp. 273-278 (1993)
    Shalan, A. E., Rashad, M. M., Yu, Y., Lira Cantú, M., and Abdel Mottaleb, M. S. A., “A facile Low Temperature Synthesis of TiO2 Nanorods for High Efficiency Dye Sensitized Solar Cells,” Appl. Phys. A, Vol. 110(1), pp. 111-122 (2012)
    Siah, W. R., Lintang, H. O., Shamsuddin, M., Yoshida, H., and Yuliati, L., “Masking Effect of Copper Oxides Photodeposited on Titanium Dioxide: Exploring UV, Visible, and Solar Light Activit,” Catal. Sci. Technol., Vol. 6 (13), pp. 5079-5087 (2016)
    Song, G., Chu, Z., Jin, W., and Sun, H., “Enhanced Performance of g-C3N4/TiO2 Photocatalysts for Degradation of Organic Pollutants under Visible Light,” Chin. J. Chem. Eng., Vol. 23 (8), pp. 1326-1334 (2015)
    Spurr, R. A., and Myers, H., “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer,” Anal. Chem., Vol. 29 (5), pp. 760-762 (1957)
    Subramanian, M. and Kannan, A., “Photocatalytic Degradation of Phenol in a Rotating Annular Reactor,” Chem. Eng. Sci., Vol. 65, pp. 2727-2740 (2010)
    Sun, L., and Bolton, J. R., "Determination of the Quantum Yield for the Photochemical Generation of Hydroxyl Radicals in TiO2 Suspensions. J. Phys. Chem. C, Vol. 100(10), pp. 4127-4134 (1996)
    Tang, X., Huang, L., Zhang, W., Jiang, R. and Zhong, H., “Photo-catalytic Activities of Plant Hormones on Semiconductor Nanoparticles by Laser-Activated Electron Tunneling and Emitting,” Sci. Rep., Vol. 5 (1), pp. 8893-8902 (2015)
    Thompson, T. L., and Yates, J. T., “Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes,” Chem. Rev, Vol. 106 (10), pp. 4428-4453 (2006)
    Tokode, O. I., Prabhu, R., Lawton, L. A., and Robertson, P. K. J., “Effect of Controlled Periodic-Based Illumination on the Photonic Efficiency of Photocatalytic Degradation of Methyl Orange,” J. Catal, Vol. 290, pp. 138-142 (2012)
    Tokode, O., Prabhu, R., Lawton, L. A., and Robertson, P. K. J., “Controlled Periodic Illumination in Semiconductor Photocatalysis,” J. Photochem. Photobiol. A, Vol. 319-320, pp. 96-106 (2016)
    Tong, K., Yang, L., Du, X., and Yang, Y., “Review of Modeling and Simulation Strategies for Unstructured Packing Bed Photoreactors with CFD Method,” Renew. Sust. Energ. Rev., Vol. 131, 109986 (2020)
    Turchi, C., and Ollis, D., “Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack,” J. Catal., Vol. 122 (1), pp.178-192 (1990)
    Upadhya, U. and Ollis, D. F., “Simple Photocatalysis Model for Photoefficiency Enhancement via Controlled Periodic Illumination,” J. Phys. Chem. B, Vol. 101, pp. 2625-2631 (1997)
    Ustunol, I. B., Gonzalez-Pech, N. I., and Grassian, V. H., “pH-Dependent Adsorption of α-Amino Acids, Lysine, Glutamic Acid, Serine and Glycine, on TiO2 Nanoparticle Surfaces,” J. Colloid Interface Sci., (2019)
    Von Gunten, U., “Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine,” Water Res., Vol. 37 (7), pp. 1469-1487 (2003)
    Wang, C., Rabani, J., Bahnemann, D. W., and Dohrmann, J. K., “Photonic Efficiency andQuantum Yield of Formaldehyde Formation from Methanol in the Presence of Various TiO2 Photocatalysts,” J. Photochem. Photobiol. A, Vol. 148 (1-3), pp. 169-176 (2002)
    Wang, H., Li, J., Ma, C., Guan, Q., Lu, Z., Huo, P., and Yan, Y., “Melamine Modified P25 with Heating Method and Enhanced the Photocatalytic Activity on Degradation of Ciprofloxacin,” Appl. Surf. Sci., Vol. 329, pp. 17-22 (2015)
    Wang, J. L., and Xu, L. J., “Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application,” Crit. Rev. Environ. Sci. Technol., Vol. 42 (3), pp. 251-325 (2012)
    Wang, K., Zhang, J., Lou, L., Yang, S., and Chen, Y., “UV or Visible Light Induced Photodegradation of AO7 on TiO2 Particles: the Influence of Inorganic Anions,” J. Photochem. Photobiol. A, Vol. 165 (1-3), pp. 201-207 (2004)
    Wang, W.-Y., and Ku, Y., “Photocatalytic Degradation of Reactive Red 22 in Aqueous Solution by UV-LED Radiation,” Water Res., Vol. 40 (12), pp. 2249-2258 (2006)
    Weinberg, H. S., Delcomyn, C. A., and Unnam, V., “Bromate in Chlorinated Drinking Waters: Occurrence and Implications for Future Regulation,” Environ. Sci. Technol., Vol. 37 (14), pp. 3104-3110 (2003)
    Wu, M., Yan, J.-M., Zhang, X., and Zhao, M. “Synthesis of g-C3N4 with Heating Acetic Acid Treated Melamine and its Photocatalytic Activity for Hydrogen Evolution,” Appl. Surf. Sci., Vol. 354, pp. 196-200 (2015).
    Wu, X., Yang, Q., Xu, D., Zhong, Y., Luo, K., Li, X., and Zeng, G., “Simultaneous Adsorption/Reduction of Bromate by Nanoscale Zerovalent Iron Supported on Modified Activated Carbon,” Ind. Eng. Chem. Res., Vol. 52 (35), pp. 12574-12581 (2013)
    Xiao, J., Yang, W., and Li, Q., “Bi Quantum Dots on Rutile TiO2 as Hole Trapping Centers for Efficient Photocatalytic Bromate Reduction under Visible Light Illumination,” Appl. Catal. B, Vol. 218, pp. 111-118 (2017)
    Xiao, Q., Wang, T., Yu, S., Yi, P., and Li, L., “Influence of UV lamp, Sulfur(IV) Concentration, and pH on Bromate Degradation in UV/sulfite Systems: Mechanisms and Applications,” Water Res., Vol. 111, pp. 288-296 (2017)
    Xu, J., Gao, N., Deng, Y., Sui, M., and Tang, Y., “Perchlorate Removal by Granular Activated Carbon Coated with Cetyltrimethyl Ammonium Chloride,” Desalination, Vol. 275 (1-3), pp. 87-92 (2011)
    Xu, Y., He, Z., Yu, S., Li, L., Cai, L., and Yi, P., “Advanced Reduction of Bromate by UV/TiO2-Bi Process without External Sacrificial Agents: Mechanism and Applications,” Chem. Eng. J., Vol. 429, 132104 (2022)
    Yan, S. C., Li, Z. S., and Zou, Z. G. “Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine. Langmuir,” ACS, Vol. 25 (17), pp. 10397-10401 (2009).
    Yang, L., and Liu, Z., “Study on Light Intensity in the Pocess of Photocatalytic Degradation of Indoor Gaseous Formaldehyde for Saving Energy, “Energy Convers. Manag., Vol. 48 (3), pp. 882-889 (2007)
    You, Y., Yuan, H., Wu, Y., Ma, Y., Meng, C., and Zhao, X., “A Novel Red Phosphorus/Perylene Diimide Metal-Free Photocatalyst with P-N Heterojunctions for Efficient Photoreduction of Bromate under Visible Light,” Sep. Purif. Technol., Vol. 264, pp. 118456 (2021)
    Yuan, N., Zhang, J., Zhang, S., Chen, G., Meng, S., Fan, Y., and Chen, S., “What is the Transfer Mechanism of Photoexcited Charge Carriers for g-C3N4/TiO2 Heterojunction Photocatalysts? Verification of Relative p-n Junction Theory,” J. Phys. Chem. C, Vol. 124 (16), pp. 8561-8575 (2020)
    Zhang, G., Zhang, Y. C., Nadagouda, M., Han, C., O’Shea, K., El-Sheikh, S. M., and Dionysiou, D. D., “Visible Light-Sensitized S, N and C Co-Doped Polymorphic TiO2 for Photocatalytic Destruction of Microcystin-LR” Appl. Catal. B, Vol. 144, pp. 614-621 (2014)
    Zhang, X., Zhang, T., Ng, J., Pan, J. H., and Sun, D. D., “Transformation of Bromine Species in TiO2 Photocatalytic System,” Environ. Sci. Technol., Vol. 44 (1), pp. 439-444 (2010)
    Zhang, Y., Chen, J., Tang, H., Xiao, Y., Qiu, S., Li, S., and Cao, S., “Hierarchically-Structured SiO2-Ag@TiO2 Hollow Spheres with Excellent Photocatalytic Activity and Recyclability,” J. Hazard. Mater., Vol. 354, pp. 17-26 (2018)
    Zong, H., Zhao, T., Zhou, G., Qian, R., Feng, T., and Pan, J. H., “Revisiting Structural and Photocatalytic Properties of g-C3N4/TiO2: Is Surface Modification of TiO2 by Calcination with Urea an Effective Route to “Solar” Photocatalyst?” Catal. Today, Vol. 335, pp. 252-261 (2019)

    QR CODE