簡易檢索 / 詳目顯示

研究生: 胡雅婷
Ya-Ting Hu
論文名稱: 以磁性人工纖毛提升微混合之效率
Efficiency enhancement of micromixing through the magnetic actuation of artificial cilia
指導教授: 陳嘉元
Chia-Yuan Chen
林怡均
Yi-Jiun Lin
口試委員: 鍾俊輝
Chun-hui Chung
陳嘉勻
Chia-Yun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 114
中文關鍵詞: 人工纖毛主動式混合器數值模擬流固耦合方法
外文關鍵詞: artificial cilia, Active mixer, numerical simulation, fluid-structure interaction method
相關次數: 點閱:325下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究的混合器設計為一主動式混合器,將磁性人工纖毛 (artificial cilia)設置於T字形微流道內,運用磁場控制人工纖毛的運動軌跡,透過不同的運動軌跡使得流場產生擾動,增加流體分子間的擴散,以提升微流體裝置的混合效率。針對人工纖毛的運動軌跡與排列方式設計四種不同的T字形微流道。本研究為運用計算流體力學(computational fluid dynamic, CFD) 建立流固耦合模型 (Fluid-Structure-Interaction model, FSI model),並結合奈威-斯托克方程式 (Navier–Stokes equations) 與質傳方程式求解流固耦合模型。利用模擬的方法進一步地探討實驗的結果,透過三維流場物理特性的分析,以了解影響混和效率的因素。
研究結果顯示運用磁性人工纖毛轉動不同的運動軌跡能有效地提升流場的混合效率,例如當人工纖毛擺動不對稱八字形運動軌跡時,相較於對稱八字形運動軌跡,其有較佳的混合效率(0.890),且混合所需時間為4 s。進一步地探討八字形運動軌跡的延伸,故改變人工纖毛轉動的形式與速度比率,研究結果顯示當人工纖毛轉動速度比率為1:3的x方向八字形運動軌跡時為較佳的混合方法,且最終的混合效率為0.860,混合時間為3.6 s。而當微流道寬度增加至800 μm時,運用參數研究法 (parametric study) 分析人工纖毛V字形排列的夾角與距離,研究結果顯示當人工纖毛轉動頻率為30 Hz且人工纖毛V字形排列的距離縮短時,其環流量的絕對值為最大 (5.59 × 10-2 mm2/s)。故由模擬與實驗的結果顯示本研究設計的混合器能有效地提升微尺度流場的混合效率,且此混合器應用於微流體裝置的發展,例如藥物與試劑的混合。


Traditionally time-consuming and laborious bio-analytical techniques can be improved significantly through the realization of a microfluidic concept. In general, micromixing with high efficiency is advantageous in microfluidic applications. However, molecular diffusion with low efficiency during micromixing hinders the performance of the most previously reported micromixers. In this work, new designs of micromixers using artificial cilia agitation were proposed and demonstrated to provide a reliable alternative for micromixing. In addition, to shed light on the interaction between the artificial cilia and the surrounding flow, a computational fluid dynamic (CFD) method was also applied. Specifically, a fluid-structure interaction, or FSI method coupled the incompressible Navier–Stokes equations and the mass transfer equation were employed to quantify the flow fields induced by artificial cilia. Results show that the mixing performance reached the highest value of 0.890 within 15 seconds when an irregular figure-of-eight trajectory was followed by each artificial cilium. Moreover, a vortex was induced through the V-shaped distribution of artificial cilia in motion. The generated vortex is beneficial for enhancing micromixing efficiency. A new active flow mixing strategy was suggested in this thesis to efficiently transport/agitate flows by magnetically actuated artificial cilia for microfluidics and biomedical applications.

摘要 i Abstract ii 誌謝 iii 目錄 iv 符號索引 vi 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.2.1 被動式混合器 2 1.2.2 主動式混合器 7 1.2.3 人工纖毛混合器數值方法 11 1.3 研究目的 13 第二章 研究方法 15 2.1 混合器的結構設計 15 2.2 數值模擬 18 2.2.1 基本假設 18 2.2.2 統御方程式 19 2.2.3 數值模擬方法 20 2.2.3.1 模型的網格設定 20 2.2.3.2 網格驗證 21 2.2.3.3 邊界條件 22 2.2.3.4 初始條件 23 2.2.3.5 混合效率的量化 23 2.2.3.6 速度場分析 24 2.3 實驗方法 25 2.3.1 模具製作 25 2.3.2 製程方法 25 2.3.3 實驗量測 27 2.3.4 混合效率的量化 28 第三章 結果與討論 30 3.1 設計一結果分析 30 3.2 設計二結果分析 34 3.3 設計三結果分析 36 3.3.1 人工纖毛轉動形式之效應 38 3.3.2 人工纖毛轉動速度比率之效應 38 3.3.3 人工纖毛轉動形式與速度比率之效應比較 39 3.3.4 人工纖毛轉動水平八字形速度比率之效應 40 3.3.5 人工纖毛轉動的速度比率增量 41 3.4 設計四結果分析 42 3.4.1 距離改變之效應 43 3.4.2 角度改變之效應 44 3.4.3 角度改變且距離改變之效應 45 第四章 結論與未來展望 47 4.1 結論 47 4.2 未來展望 49 參考文獻 51

[1] Nguyen, N.-T. and Wu, Z., 2005, "Micromixers—a review," Journal of Micromechanics and Microengineering, Vol. 15, pp. R1-R16.
[2] Glasgow, I. and Aubry, N., 2003, "Enhancement of microfluidic mixing using time pulsing," Lab Chip, Vol. 3, pp. 114-20.
[3] Bau, H. H., Zhong, J., and Yi, M., 2001, "A minute magneto hydro dynamic (MHD) mixer," Sensors and Actuators B: Chemical, Vol. 79, pp. 207-215.
[4] Ahmed, D., Mao, X., Shi, J., Juluri, B. K., and Huang, T. J., 2009, "A millisecond micromixer via single-bubble-based acoustic streaming," Lab Chip, Vol. 9, pp. 2738-41.
[5] Gobby, D., Angeli, P., and Gavriilidis, A., 2000, "Mixing characteristics of T-type microfluidic mixers," Journal of Micromechanics and Microengineering, Vol. 11, pp. 126-132.
[6] Hessel, V., Lowe, H., and Schonfeld, F., 2005, "Micromixers—a review on passive and active mixing principles," Chemical Engineering Science, Vol. 60, pp. 2479-2501.
[7] Soleymani, A., Kolehmainen, E., and Turunen, I., 2008, "Numerical and experimental investigations of liquid mixing in T-type micromixers," Chemical Engineering Journal, Vol. 135, pp. S219-S228.
[8] Bessoth, F. G., deMello, A. J., and Manz, A., 1999, "Microstructure for efficient continuous flow mixing," Analytical Communications, Vol. 36, pp. 213-215.
[9] Lob, P., Drese, K. S., Hessel, V., Hardt, S., Hofmann, C., Lowe, H., et al., 2004, "Steering of Liquid Mixing Speed in Interdigital Micro Mixersform Very Fast to Deliberately Slow Mixing," Chemical Engineering&Technology, Vol. 27, pp. 340-345.
[10] Cha, J., Kim, J., Ryu, S.-K., Park, J., Jeong, Y., Park, S., et al., 2006, "A highly efficient 3D micromixer using soft PDMS bonding," Journal of Micromechanics and Microengineering, Vol. 16, pp. 1778-1782.
[11] Lee, S. W., Kim, D. S., Lee, S. S., and Kwon, T. H., 2006, "A split and recombination micromixer fabricated in a PDMS three-dimensional structure," Journal of Micromechanics and Microengineering, Vol. 16, pp. 1067-1072.
[12] Lim, T. W., Son, Y., Jeong, Y. J., Yang, D. Y., Kong, H. J., Lee, K. S., et al., 2011, "Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length," Lab Chip, Vol. 11, pp. 100-3.
[13] Mengeaud, V., Josserand, J., and Girault, H. H., 2002, "Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study," Analytical Chemistry, Vol. 74, pp. 4279-4286.
[14] Wang, H., Iovenitti, P., Harvey, E., and Masood, S., 2002, "Optimizing layout of obstacles for enhanced mixing in microchannels," Smart Materials and Structures, Vol. 11, pp. 662-667.
[15] Wang, L. and Yang, J.-T., 2006, "An overlapping crisscross micromixer using chaotic mixing principles," Journal of Micromechanics and Microengineering, Vol. 16, pp. 2684-2691.
[16] Yang, J.-T., Huang, K.-J., Tung, K.-Y., Hu, I. C., and Lyu, P.-C., 2007, "A chaotic micromixer modulated by constructive vortex agitation," Journal of Micromechanics and Microengineering, Vol. 17, pp. 2084-2092.
[17] Tung, K.-Y., Li, C.-C., and Yang, J.-T., 2009, "Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer," Microfluidics and Nanofluidics, Vol. 7, pp. 545-557.
[18] Lee, H.-Y. and Voldman, J., 2007, "Optimizing Micromixer Design for Enhancing Dielectrophoretic Microconcentrator Performance," Analytical Chemistry, Vol. 79, pp. 1833-1839.
[19] Jacobson, S. C., Mcknight, T. E., and Ramsey, J. M., 1999, "Microfluidic Devices for Electrokinetically Driven Parallel and Serial Mixing," Analytical Chemistry, Vol. 71, pp. 4455-4459.
[20] Yan, D., Yang, C., Miao, J., Lam, Y., and Huang, X., 2009, "Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects," Electrophoresis, Vol. 30, pp. 3144-52.
[21] Yang, Z., Goto, H., Matsumoto, M., and Maeda, R., 2000, "Active micromixer for microfluidic systems using lead-zirconate-titanate (PZT)-generated ultrasonic vibration.," Electrophoresis, Vol. 21, pp. 116-119.
[22] Toonder, J., Bos, F., Broer, D., Filippini, L., Gillies, M., de Goede, J., et al., 2008, "Artificial cilia for active micro-fluidic mixing," Lab Chip, Vol. 8, pp. 533-41.
[23] Khatavkar, V. V., Anderson, P. D., den Toonder, J. M. J., and Meijer, H. E. H., 2007, "Active micromixer based on artificial cilia," Physics of Fluids, Vol. 19, pp. 083605.
[24] Lambert, R. A. and Rangel, R. H., 2010, "The role of elastic flap deformation on fluid mixing in a microchannel," Physics of Fluids, Vol. 22, pp. 052003.
[25] Oh, K., Smith, B., Devasia, S., Riley, J. J., and Chung, J.-H., 2010, "Characterization of mixing performance for bio-mimetic silicone cilia," Microfluidics and Nanofluidics, Vol. 9, pp. 645-655.
[26] Bathe, K. J., "ADINA-F Theory and Modeling Guide Volume III:ADINA CFD & FSI " in ADINA System 8.5 Release Notes, ed, 2008.
[27] Fang, Y., Ye, Y., Shen, R., Zhu, P., Guo, R., Hu, Y., et al., 2012, "Mixing enhancement by simple periodic geometric features in microchannels," Chemical Engineering Journal, Vol. 187, pp. 306-310.
[28] Chen, C. Y., Chen, C. Y., Lin, C. Y., and Hu, Y. T., 2013, "Magnetically actuated artificial cilia for optimum mixing performance in microfluidics," Lab Chip, Vol. 13, pp. 2834-9.
[29] Chen, C.-Y., Lin, C.-Y., and Hu, Y.-T., 2014, "Inducing 3D vortical flow patterns with 2D asymmetric actuation of artificial cilia for high-performance active micromixing," Experiments in Fluids, Vol.55, pp. 1765.

QR CODE