簡易檢索 / 詳目顯示

研究生: 戴君泰
Chun-Tai Tai
論文名稱: 50 kW高溫固態氧化物燃料電池轉換器系統分析與設計
Analysis and Design of a 50 kW Converter System for High Temperature Solid-Oxide Fuel Cell
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
劉添華
Tian-Hua Liu
劉益華
Yi-Hua Liu
王順忠
Shun-Chung Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 79
中文關鍵詞: 隔離型直流-直流升壓轉換器電流饋入均流控制固態氧化物燃料電池
外文關鍵詞: DC-DC isolated step-up converter, current-fed, current sharing control, solid-oxide fuel cell
相關次數: 點閱:219下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主旨在研製與分析一型可適用於多組並聯之直流升壓轉換器及其控制法,並以固態氧化物燃料電池50 kW電力系統為設定應用環境。其中以12組5 kW電流饋入隔離型直流-直流升壓轉換器為電路架構基礎,並以比例積分控制架構實現電流閉迴路與多模組均流控制。首先分析隔離型直流升壓轉換器模型,進一步探討控制策略,之後使用模擬軟體PSIM建立完整的隔離型直流升壓轉換器並模擬實驗其可行性作為參考依據。為符合研究目標,本文使用5 kW之 180 V升750 V直流轉換器規格,以對應於高溫固態氧化物燃料電池電力系統之直流升壓與交流逆變器之需求。本文以上述規格之轉換器用於分析模擬,並通過選用實際元件參數之運算得以驗證本文介紹之轉換器功能與損耗,可得單組直流升壓轉換器效率95.98%,已被計算證實於文中,且經由結果證明本文所提隔離型直流升壓轉換器之可行性。


    This thesis presents the research and analysis a type of isolated step-up converter and control method that can be applied to multiple modules of parallel. 50 kW power convert used for solid-oxide fuel cell has been selected as a hypothetical application environment. Therefore, the 5 kW isolated DC-DC current-fed step-up converter is the basis of the circuit topology. The closed loop current control and multi-module current sharing control are realized by the proportional integral control technique. First, the model of the start of implement is to analysis the model of isolated DC-DC step-up converter is analyzed, and the control strategy is further explored. Then, the simulation software PSIM is used to model the converter and the feasibility of the simulation is evaluated for reference. For reaching the studied objectives, this thesis uses the specification of 5 kW and 180 V to 750 V DC is adopted in this thesis to implement the step-up converter and meet inverter requirements of solid-oxide fuel cell power systems. Finally, the functionality and power loss of the converter described in this thesis are verified through the calculation of using relevant component parameters. The system efficiency of 95.98% for each converter has been verified, and the results prove the feasibility of the proposed isolated DC-DC step-up converter.

    摘 要 iv Abstract v 圖索引 ix 表索引 xii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文內容架構 3 第二章 隔離型升壓直流-直流轉換器 4 2.1 電路操作分析摘要 4 2.2 操作區間與電路方程式 7 2.3 電路規格訂定 15 第三章 轉換器控制策略 19 3.1 閉迴路與比例積分控制流程介紹 19 3.2 電路轉移函數 20 3.3 相位與增益補償 21 3.4 Matlab模擬與驗證 23 3.5 多模組控制流程介紹 24 3.6 適用於PSIM之應用C語言控制方法 26 第四章 系統規格研製 27 4.1電路規格 27 4.2元件選擇 27 4.2.1電感選擇 27 4.2.2變壓器選擇 28 4.2.3功率開關選擇 32 4.2.4二極體選擇 32 4.2.5元件選擇整理 33 第五章 實驗結果與效率分析 34 5.1 模擬結果 34 5.1.1單組轉換器模擬結果 34 5.1.2多組轉換器並聯模擬結果 37 5.1.3結合交流逆變器之模擬結果 38 5.2 效率計算 45 5.2.1電感損耗 46 5.2.2變壓器損耗 48 5.2.3功率開關損耗 51 5.2.4二極體損耗 56 5.2.5效率計算 58 第六章 結論與未來展望 60 6.1 結論 60 6.2 未來展望 61 參考文獻 62

    [1] H. Kawamoto, “Research and Development Trends in Solid Oxide Fuel Cell Materials - From the Viewpoint of Electrolyte-Related R&D as Key,” NISTEP Science & Technology Foresight Center, Science & Technology Trends Quarterly Review. 2008, No.26, pp. 52-70., Jan. 2008
    [2] N. Laosiripojana, W. Wiyaratn, W. Kiatkittipong, A. Arpornwichanop, A. Soottitantawat, and S. Assabumrungrat, “Reviews on Solid Oxide Fuel Cell Technology,” Eng. J., vol. 13, no. 1, pp. 65-84, Feb. 2009.
    [3] P. Thounthong, B. Davat, S. Rael, and P. Sethakul, “Fuel cell high-power applications—An overview of power converters for a clean energy conversion technology,” IEEE Ind. Electron. Mag., vol. 3, no. 1, pp. 32–46, Mar. 2009.
    [4] L. Sun, G.Y. Wu. Y.L. Xue, J. Shen, D.H. Li, and K. Y. Lee, “Coordinated Control Strategies for Fuel Cell Power Plant in a Microgrid,” IEEE Transactions on Energy Conversion, vol. 33, no. 1, pp. 1-9, Mar. 2018.
    [5] M. E. Raoufat, A. Khayatian, and A. Mojallal, “Performance Recovery of Voltage Source Converters With Application to Grid-Connected Fuel Cell DGs,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1197-1204, Mar. 2018.
    [6] J.M. Kim, D.H. Shin, N.I. Cho, B.H. Kang, and N.H. Chang, “Aging Management Using a Reconfigurable Switch Network for Arrays of Nonideal Power Cells,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 5, pp. 855-866, May 2018.
    [7] R. Ma ; F. Gao ; E. Breaz ; Y.G. Huangfu, and P. Briois, “Multidimensional Reversible Solid Oxide Fuel Cell Modeling for Embedded Applications,” IEEE Transactions on Energy Conversion, vol. 33, no. 2, pp. 692-701, Jun. 2018.
    [8] P. A. Lindahl, S. R. Shaw, and S. B. Leeb, “Fuel Cell Stack Emulation for Cell and Hardware-in-the-Loop Testing,” IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 9, pp. 2143-2452, Sept. 2018.
    [9] R. Ma, E. Breaz, Z.L. Li, P. Briois, and F. Gao, “Co-Oxidation Modeling for a Syngas-Supplied Microtubular Solid Oxide Fuel Cell,” IEEE Transactions on Industry Applications, vol. 54, no. 5, pp. 4917-4926, Sept.-Oct. 2018.
    [10] J. Liu, C. Su, C. Wang, L.Y. Zhu, and J. He, “Influence of solid oxide fuel cell on power system transient stability,” The Journal of Engineering, vol. 2019, no.16, pp. 1081-1086, Mar. 2019.
    [11] J.M. Fan, Y.S. Lu, J.F. Ding, A.B. Meng, Z.H. Tang, and J.Z. Ye, “SOFC Detector With OCA Approach to Quantify Trace Gases Dissolved in Transformer Oil,” IEEE Sensors Journal, vol. 20, no. 2, pp. 648-655, Jan. 2020
    [12] K. Wang, C. Y. Lin, L. Zhu, D. Qu, F. C. Lee, and J. S. Lai, “Bi-directional DC to DC Converters for Fuel Cell Systems,” in PET’98, 1998, pp. 47-51.
    [13] Y. M. Chen, Y. C. Liu, and F. Y. Wu, “Multi-Input DC/DC Converter Based on the Multi-winding Transformer for Renewable Energy Applications,” IEEE Transactions on Industry Applications, Vol. 38, No. 4, pp. 1096-1104, Jul./ Aug. 2002.
    [14] L.Z. Zhu, K.R. Wang, F.C. Lee, and J.S. Lai , “New Start-up Schemes for Isolated Full-Bridge Boost Converters,” IEEE Transactions on Power Electron., vol. 18, no. 4, pp. 946-951, Jul. 2003.
    [15] X. Kong, and A. M. Khambadkone, “Analysis and implementation of a high efficiency, interleaved current-fed full bridge converter for fuel cell system,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 543–550, Mar. 2007.
    [16] Vicor Power, “5. Current Sharing in Power Arrays - Design and Applications Manual, Rev. 5”, 2008.
    [17] R.Y. Chen, T.J. Liang, J.F. Chen, R.L. Lin, and K.C. Tseng, “Study and implementation of a current-fed full-bridge boost dc–dc converter with zero-current switching for high-voltage applications,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1218–1226, Jul./Aug. 2008.
    [18] V. V. Subrahmanya Kumar Bhajana, and S. Rama Reddy, “A Novel ZVS-ZCS Bidirectional DC-DC Converter For Fuel Cell And Battery Application, ” in Conference on Power Electronics and Drive Systems of the IEEE, 2009.
    [19] M. Nymandand, M.A.E. Andersen, “High-efficiency isolated boost dc-dc converter for high-power low-voltage fuel-cell applications, ” in IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 505–514, Feb. 2010.
    [20] M.J. Baei, and G. Moschopoulos, “A ZVS-PWM Full-Bridge Boost Converter for Applications Needing High Step-Up Voltage Ratio.” in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition, 2012
    [21] Z. Zhang, O. C. Thomsen, and M. A. E. Andersen, “Soft-switched dual input dc–dc converter combining a boost-half-bridge cell and a voltage fed full-bridge cell,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 4897–4920, Nov. 2013.
    [22] J. Lai, and M. W. Ellis, “Fuel Cell Power Systems and Applications,” in Proceedings of the IEEE, vol. 105, no. 11, pp. 2166-2190, Nov. 2017.
    [23] M.K. Nguyen, T.D. Duong, Y.C. Lim, and Y.J. Kim, “Isolated Boost DC–DC Converter With Three Switches,” IEEE Transactions on Power Electron., vol. 33, no. 2, pp. 1389-1398, Feb. 2018.
    [24] J.Y. Liu, Z.D. Zheng, K. Wang, and Y.D. Li, “Comparison of boost and LLC converter and active clamp isolated full-bridge boost converter for photovoltaic DC system,” The Journal of Engineering, vol. 2019, no. 16, pp. 3007-3011, Mar. 2019.
    [25] 吳義利,切換式電源轉換器原理與實用設計技術(實例設計導向),第三版,台北:文笙書局,2018年。
    [26] EPARC,電力電子學綜論,第二版,台北:全華 書,2008年。
    [27] 梁適安,交換式電源供給器之理論與實務設計第二版,台北:全華圖書,2008年
    [28] TDK Group Company, “E 70/33/32 Core and accessories,” Datasheet
    [29] Chang Sung Corporation, “Magnetic Powder Cores,” Datasheet.
    [30] ROHM Semiconductor, “SCT3060AL,” Datasheet.
    [31] Infineon Technologies, “MOSFET Power Losses Calculation Using the Data-Sheet Parameters,” Datasheet.
    [32] B. Agrawal, M. Preindly, B. Bilgin, and A. Emadiz, “Estimating Switching Losses for SiC MOSFETs with Non-Flat Miller Plateau Region, ” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 2664 – 2670.
    [33] Comchip Technology, “CDBJFSC101200-G,” Datasheet.

    QR CODE