簡易檢索 / 詳目顯示

研究生: 梁雲淵
Yun-yuan Liang
論文名稱: 固態反應法製備磷灰石結構矽酸鑭固態電解質
Synthesis of apatite-type lanthanum silicate as a solid oxide fuel cell electrolyte via solid state reaction
指導教授: 郭俞麟
Yu-lin Kuo
口試委員: 周振嘉
Chen-chia Chou
林頌恩
Song-en Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 86
中文關鍵詞: 矽酸鑭磷灰石結構固態氧化物燃料電池固態反應法
外文關鍵詞: Lanthanum silicate, Apatite, Solid oxide fuel cells (SOFC), Solid state reaction
相關次數: 點閱:508下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷灰石結構矽酸鑭La10-x(SiO4)6O2+δ具有高氧離子導電率及低活化能,被認為具有作為中低溫固態氧化物燃料電池電解質的潛力,不同於高對稱性的螢石結構電解質YSZ、CeO2和Bi2O3系統或是鈣鈦礦結構的LaGaO3系統,低對稱性的磷灰石結構材料屬六方晶系,存在著可讓氧離子輕易擴散遷移的路徑。但磷灰石結構矽酸鑭固態電解質之製備仍存在許多挑戰,若以固態反應法混合製備,由於其不易燒結之特性,因此需要在高於1600 ℃以上的高溫燒結才具有高緻密度;且由La2O3/SiO2之相圖可知,La9.33(SiO4)6O2為一中間相,合成時易形成第二相La2SiO5及La2Si2O7;此外起始粉末La2O3的不穩定性,故難以控制矽酸鑭的劑量比。
    本研究以La(OH)3和SiO2作為起始粉末,利用固態反應法在1200 ℃鍛燒後成功合成矽酸鑭La10(SiO4)6O3,但XRD結果指出在1550和1600 ℃燒結後有La2Si2O7的繞射峰存在。此外以通入還原氣氛H2之TGA測試其熱化學穩定性,顯示矽酸鑭為一抗具有良好抗還原性質的固態電解質材料。在燒結體微結構對導電性質的影響方面,晶粒尺寸約在490-530 nm之不同燒結體,在低溫下導電率隨著晶粒尺寸的增大而增高。而時效測試可知雖然燒結後之矽酸鑭有第二相La2Si2O7的產生,但仍維持穩定的導電率,不隨時效時間的增長而下降。


    Lanthanum silicate structural with formula La10-x(SiO4)6O2+δ (LSO) are potential candidates for IT-SOFC and LT-SOFC because of its high ionic conductivity and low activation energy. Rather than fluorite and perovskite structure with high symmetric structure, lanthanum silicate with apatite-type structure is belong to hexagonal structure and believed to migrate via an interstitial conduction mechanism. Studies have indicated that LSO synthesized via solid state reactions have to be sintered at high temperature (>1600 ℃) to achieve the desired densities. According to phase equilibrium diagram of La2O3/SiO2, the composition of La9.33(SiO4)6O2 is a intermediate phase , and La2SiO5 or La2Si2O7 are easily formed as secondary phases. In addition, it’s difficult to control the stoichiometry of LSO due to the hygroscopicity of its staring materials La2O3.
    In this study, apatite-type lanthanum silicates La10(SiO4)6O3 were prepared by solid state reaction using powders of La(OH)3 and SiO2 as starting materials. The calcined samples are characterized by XRD and the results indicate that LSO have been obtained after calcination at 1200 ℃, but the La2Si2O7 impurity is formed after sintered at 1550 and 1600 ℃. TGA of the LSO powders were performed under hydrogen atmosphere, and the results indicates that LSO is a stable SOFC electrolyte materials. The effect of microstructure on the conductivity was also investigated, and the results show that the sintered ceramic with coarse grain size exhibits higher conductivity than fine one at low temperature. In addition, the aging test of LSO indicates that the sintered ceramic with La2Si2O7 impurity maintains a conductive stability.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖索引 VI 表索引 X 第一章 緒論 1 1.1 前言 1 1.2 燃料電池簡介 2 1.3 研究動機 5 第二章 文獻回顧 7 2.1 固態氧化物燃料電池(SOFCs) 7 2.1.1 固態氧化物燃料電池之優點 7 2.1.2 固態氧化物燃料電池之工作原理 7 2.1.3 陰極材料 8 2.1.4 陽極材料 9 2.1.5 SOFCs 燃料氣體的處理—內部重整 9 2.1.6 電解質 10 2.1.7 內連接器 11 2.2 SOFC電解質種類 11 2.2.1 螢石結構固態電解質 11 2.2.2 鈣鈦礦結構固態電解質 15 2.2.3 磷灰石結構固態電解質 17 2.3 磷灰石結構固態電解質系統 19 2.3.1 離子導電性 19 2.3.2 一維離子導電性 20 2.3.3 磷灰石結構固態電解質的離子導電機制 20 2.3.4 磷灰石結構固態電解質的化學計量比與離子導電率的關係 23 2.4 磷灰石結構固態電解質粉末的製備方法 30 2.5 固態燒結行為 35 第三章 實驗設備與程序 40 3.1 實驗藥品 40 3.2 實驗儀器 40 3.3 實驗步驟 40 3.3.1 磷灰石結構矽酸鑭粉末之合成 41 3.3.2 壓錠與燒結程序 42 3.4 材料性質分析 42 3.4.1 阿基米德法 42 3.4.2 X光繞射儀 43 3.4.3 場發射掃瞄式電子顯微鏡 43 3.4.4 熱重微差熱掃描分析儀 44 3.4.5 電性量測 45 第四章 結果與討論 46 4.1 以固態反應法製備磷灰石結構矽酸鑭系粉末 46 4.2 磷灰石結構矽酸鑭燒結體之製備 53 4.3 熱化學穩定性評估 57 4.4 磷灰石結構矽酸鑭電解質的微結構與導電率之關係 60 4.5 時效測試 64 第五章 結論 65 第六章 參考文獻 66

    1.黃鎮江,燃料電池,全華科技圖書股份有限公司 (2004)。
    2.黃炳照,鄭銘堯,「固態氧化物燃料電池之進展」,化工技術,第十卷,第六期,第132-150頁 (2002)。
    3.http://www.opec.org/opec_web/en/
    4.台灣電力公司98年年報。
    5.http://www.ballard.com/
    6.S. Nakayama, T. Kageyama, H. Aono, Y. Sadaoka, “Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln=La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb),” Journal of Materials Chemistry, 5 (1995) 1801-1805.
    7.Higuchi et al., “Method of producing oxide ion conductor,” ”United States Patent, 7128995 (2006).
    8.S. Nakayama, M. Sakamoto, “Electrical properties of new type high oxide ionic conductor RE10Si6027 (RE=La, Pr, Nd, Sm, Gd, Dy),” Journal of the European Ceramic Society, 18 (1998) 1413-1418.
    9.http://www.seca.doe.gov
    10.M. B. Phillipps , N. M. Sammes , O. Yamamoto, “Gd1-xAxCo1-yMnyO3 (A=Sr, Ca) as a cathode for the SOFC,” Solid State Ionics, 123 (1999) 131-138.
    11.E. Maguire, B. Gharbage, F. M. B. Marques , J. A. Labrincha, “Cathode materials for intermediate temperature SOFCs,” Solid State Ionics, 127 (2000) 329-335.
    12.Z. Lei, Q. S. Zhu, L. Zhao, “Low temperature processing of interlayer-free La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes for intermediate temperature solid oxide fuel cells,” Journal of Power Sources, 161 (2006) 1169-1175.
    13.H. J. Hwang, J. W. Moon, S. H. Lee, E. A. Lee, “Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs,” Journal of Power Sources, 145 (2005) 243-248.
    14.H. J. Hwang, J. W. Moon, M. Awano, ” Fabrication of novel type solid electrolyte membrane reactors for exhaust gas purification,” Journal of the European Ceramic Society, 24 (2004) 1325-1328.
    15.B. C. H. Steele, K. M. Hori, S. Uchino, “Kinetic parameters influencing the performance of IT-SOFC composite electrodes,” Solid State Ionics, 135 (2000) 445-450.
    16.M. T. Colomer, B. C. H. Steele, J. A. Kilner, “Structural and electrochemical properties of the Sr0.8Ce0.1Fe0.7Co0.3O3-δ perovskite as cathode material for ITSOFCs,” Solid State Ionics, 147 (2002) 41-48.
    17.A. N. Petron, O. F. Kononchuk, A. V. Cherepanov, P. Kofstad, “Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y,” Solid State Ionics, 80 (1995) 189-199.
    18.L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, S. R. Sehlin, “Structure and electrical properties of LaxSr1-xCoyFe1-yO3. Part 1. The system LaxSr1-xCoyFe1-yO3,” Solid State Ionics, 76 (1995) 259-271.
    19.J. L. Li, S. R. Wang, R. Z. Liu, Z. R. Wang, J.Q. Qian, “Electrochemical performance of (Bi2O3)1−x(Er2O3)x-Ag composite material for intermediate temperature solid oxide fuel cell cathode”, Solid State Ionics, 179 (2008) 1597-1601.
    20.L. Zhang, S. P. Jiang, W. Wang, Y. J. Zhang, “NiO/YSZ, anode-supported, thin-electrolyte, solid oxide fuel cells fabricated by gel casting,” Journal of Power Sources, 170 (2007) 55-60.
    21.S. W. Zha, W. Rauch, M. L. Liu, “Ni-Ce0.9Gd0.1O1.95 anode for GDC electrolyte-based low-temperature SOFCs,” Solid State Ionics, 166 (2004) 241-250.
    22.E. W. Park, H. Moon, M. S. Park, S. H. Hyun, “Fabrication and characterization of Cu–Ni–YSZ SOFC anodes for direct use of methane via Cu-electroplating,” International Journal of Hydrogen Energy, 34 (2009) 5537-5545.
    23.肖鋼,燃料電池技術,全華科技圖書股份有限公司 (2010)。
    24.A. Rizea, D. Chirlesan, C. Petot, G. Petot-Ervas, “The influence of alumina on the microstructure and grain boundary conductivity of yttria-doped zirconia,” Solid State Ionics, 146 (2002) 341-353.
    25.Y. Liu, L. E. Lao, “Structural and electrical properties of ZnO-doped 8 mol% yttria-stabilized zirconia,” Solid State Ionics, 177 (2006) 159-163.
    26.A. B. Stambouli, E. Traversa, “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy,” Renewable & Sustainable Energy Reviews, 6 (2002) 433-455.
    27.H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito, F. B. Prinz, “High-performance ultrathin solid oxide fuel cells for low-temperature operation,” Journal of the Electrochemical Society, 154 (2007) B20-B24.
    28.H. Yohiro, K. Eguchi, H. Arai, “Ionic conduction and microstructure of the ceria-strontia system,” Solid State Ionics, 21 (1986) 37-47.
    29.G. M. Wolten, “Diffusionless phase transformations in zirconia and hafnia,” Journal of the American Ceramic Society, (46) 2002 418-422.
    30.K. Huang, J. B. Goodenough, “A solid oxide fuel cell based on Sr and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer,” Journal of Alloys and Compounds, 303-304 (2000) 454-464.
    31.Y. M. Chiang, D. P. Birnie III, W. D. Kingery, Physical Ceramics, John Wiley & Sons, Inc., New York (1997).
    32.陳誦英,王峰雲,鄭淑芬,固體氧化物燃料電池(SOFC)研究進展和發展動態,財團法人中技社。
    33.E. Koch, C. Wagner, “The mechanism of ionic conduction in solid salts on the basis of the disorder idea. I.,” Zeitschrift für Physikalische Chemie, B38 (1937) 295-324.
    34.H. L. Tuller, A. S. Nowick, “Doped ceria as a solid oxide electrolyte,” Journal of the Electrochemical Society, 122 (1975) 255-259.
    35.K. Eguchi, “Ceramic materials containing rare earth oxides for solid oxide fuel cell,” Journal of Alloys and Compounds, 250 (1997) 486-491.
    36.http://en.wikipedia.org/wiki
    37.P. Shuk, H.-D. Wiemhofer, U. Guth, W. Gopel, M. Greenblatt, “Oxide ion conducting solid electrolytes based on Bi2O3,” Solid State Ionics, 89 (1996) 179-196.
    38.A. Chroneos, R. V. Vovk, I. L. Goulatis, L. I. Goulatis, “Oxygen transport in perovskite and related oxides: A brief review,” Journal of Alloys and Compounds, 494 (2010) 190-195.
    39.T. Ishihara, H. Matsuda, Y. Takita, “Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor,” Journal of the American Chemical Society, 116 (1994) 3801-3803.
    40.M. Hrovat, A. Ahmad-Khanlou, Z. Samardž ija, J. Holc, “Interactions between lanthanum gallate based solid electrolyte and ceria,” Materials Research Bulletin, 34 (1999) 2027-2034.
    41.J. E. H. Sansom, A. Najib, P. R. Slater, “Oxide ion conductivity in mixed Si/Ge-based apatite-type systems,” Solid State Ionics, 175 (2004) 353-355.
    42.I. A. Bondar, “Rare-Earth Silicates,” Ceramics International, 8 (1982) 83-89.
    43.張密林,王貴領,趙輝,孫麗萍,霍麗華,高山,「氧基磷灰石離子導體的研究進展」,黑龍江大學自然科學學報,第二十二卷,第五期,第593-601頁 (2005)。
    44.H. Arikawa, H. Nishiguchi, T. Ishihara, Y. Takita, “Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide,” Solid State Ionics, 136-137 (2000) 31-37.
    45.A. Brisse, A.-L. Sauvet, C. Barthet, S. Georges, J. Fouletier, “Microstructural and electrochemical characterizations of an electrolyte with an apatite structure, La9Sr1Si6O26.5,” Solid State Ionics, 178 (2007) 1337–1343.
    46.S. Chefi, A. Madani, H. Boussetta, C. Roux, A. Hammou, “Electrical properties of Al-doped oxyapatites at intermediate temperature,” Journal of Power Sources, 177 (2008) 464-469.
    47.田長安,曾燕尾,「中低溫SOFC電解質材料研究新進展」,電源技術,第三十卷,第四期,第329-333頁 (2006)。
    48.S. Nakayama, M. Sakamoto, M. Higuchi, K. Kodaira, M. Sato, S. Kakita, T. Suzuki, K. Itoh, “Oxide ionic conductivity of apatite type Nd9.33(SiO4)6O2 single crystal,” Journal of the European Ceramic Society, 19 (1999) 507-510.
    49.M. Higuchi, K. Kodaira, S. Nakayama, “Nonstoichiometry in apatite-type neodymium silicate single crystals,” Journal of Crystal Growth, 216 (2000) 317-321.
    50.M. Higuchi, K. Kodaira, S. Nakayama, “Growth of apatite-type neodymium silicate single crystals by the floating-zone method,” Journal of Crystal Growth, 207 (1999) 298-302.
    51.M. Higuchi, H. Katase, K. Kodaira, S. Nakayama, “Float zone growth and characterization of Pr9.33(SiO4)6O2 and Sm9.33(SiO4)6O2 single crystals with an apatite structure,” Journal of Crystal Growth, 218 (2000) 282-286.
    52.M. Higuchi, Y. Masubuchi, S. Nakayama, S. Kikkawa, K. Kodaira, “Single crystal growth and oxide ion conductivity of apatite-type rare-earth silicates,” Solid State Ionics, 174 (2004) 73-80.
    53.Y. Masubuchi, M. Higuchi, K. Kodaira, “Reinvestigation of phase relations around the oxyapatite phase in the Nd2O3–SiO2 system,” Journal of Crystal Growth, 247 (2003) 207-212.
    54.H. Okudera, A. Yoshiasa, Y. Masubuchi, M. Higuchi, S. Kikkawa, “Temperature dependence of structural parameters in oxide-ion-conducting Nd9.33(SiO4)6O2: single crystal X-ray studies from 295 to 900 K,” Journal of Solid State Chemistry, 1772 (2004) 4451-4458.
    55.J. R. Tolchard, M. S. Islam, P. R. Slater, “Defect chemistry and oxygen ion migration in the apatite-type materials La9.33Si6O26 and La8Sr2Si6O26,” Journal of Materials Chemistry, 13 (2003) 1956-1961.
    56.A. Najib, J. E. H. Sansom, J. R. Tolchard, P. R. Slater, M. S. Islam, “Doping strategies to optimise the oxide ion conductivity in apatite-type ionic conductors,” Dalton Transactions, 19 (2004) 3106-3109.
    57.J. E. H. Sansom, J. R. Tolchard, P. R. Slater, M. S. Islam, “Synthesis and structural characterisation of the apatite-type phases La10-xSi6O26+z doped with Ga,” Solid State Ionics, 167 (2004) 17-22.
    58.E. J. Abram, D. C. Sinclair, A. R. West, “A novel enhancement of ionic conductivity in the cation-deficient apatite La9.33(SiO4)6O2,” Journal of Materials Chemistry Communication, 11 (2001) 1978-1979.
    59.H. Yoshioka, S. Tanase, “Magnesium doped lanthanum silicate with apatite-type structure as an electrolyte for intermediate temperature solid oxide fuel cells,” Solid State Ionics, 176 (2005) 2395-2398.
    60.E. Kendrick, M. S. Islam, P. R. Slater, “Investigation of the structural changes on Zn doping in the apatite-type oxide ion conductor La9.33Si6O26: A combined neutron diffraction and atomistic simulation study,” Solid State Ionics, 177 (2007) 3411-3416.
    61.S. Tao, J. T. S. Irvine, “Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process,” Materials Research Bulletin, 36 (2001) 1245-1258.
    62.J. E. H. Sansom, D. Richings, P. R. Slater, “A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26,” Solid State Ionics, 139 (2001) 205-210.
    63.L. León-Reina, E. R. Losilla, M. Martínez-Lara, S. Bruque, M. A. G. Aranda, “Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes,” Journal of Materials Chemistry, 14 (2004) 1142-1149.
    64.H. Benmoussa, M. Mikou, A. Bensaoud, A. Bouhaouss, R. Morineaux, “Electrical properties of lanthanum containing vanadocalcic oxyapatite,” Materials Research Bulletin, 35 (2000) 369-375.
    65.L. León-Reina, J. M. Porras-Vázquez, E. R. Losilla, M. A. G. Aranda, “Interstitial oxide positions in oxygen-excess oxy-apatites,” Solid State Ionics, 177 (2006) 1307-1315.
    66.M. S. Islam, J. R. Tolchard, P. R. Slater, “An apatite for fast oxide ion conduction,” Chemical Communications, (2003) 1486-1487.
    67.A. L. Shaula, V. V. Kharton, J. C. Waerenborgh, D. P. Rojas, F. M. B. Marques, “Oxygen ionic and electronic transport in apatite ceramics,” Journal of the European Ceramic Society, 25 (2005) 2583-2586.
    68.H. Yoshioka, “Oxide ionic conductivity of apatite-type lanthanum silicates,” Journal of Alloys and Compounds, 408-412 (2006) 649-652.
    69.http://www3.plala.or.jp/Apatite/
    70.L. León-Reina, E. R. Losilla, M. Martínez-Lara, S. Bruque, A. Llobet, D. V. Sheptyakov, M. A. G. Aranda, “Interstitial oxygen in oxygen-stoichiometric apatites,” Journal of Materials Chemistry, 15 (2005) 2489-2498.
    71.H. Yoshioka, “High oxide ion conductivity in Mg-doped La10Si6O27 with apatite-type structure,” Chemistry Letters, 33 (2004) 392-393.
    72.E. Kendrick, J. E. H. Sansom, J. R. Tolchard, M. S. Islam, P. R. Slater, “Neutron diffraction and atomistic simulation studies of Mg doped apatite-type oxide ion conductors,” The Royal Society of Chemistry, 134 (2007) 181-194.
    73.H. Yoshioka, “Enhancement of ionic conductivity of apatite-type lanthanum silicates doped with cations,” Journal of the American Ceramic Society, 90 (2007) 3099-3105.
    74.H. Yoshioka, Y. Nojiri, S. Tanase, “Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions,” Solid State Ionics, 179 (2008) 2165-2169.
    75.http://en.wikipedia.org/wiki/Ball_mill
    76.E. Béchade, I. Julien, T. Iwata, O. Masson, P. Thomas, E. Champion, K. Fukuda, “Synthesis of lanthanum silicate oxyapatite materials as a solid oxide fuel cell electrolyte,” Journal of the European Ceramic Society, 28 (2008) 2717-2724.
    77.S. Célérier, C. Laberty, F. Ansart, P. Lenormand, P. Stevens, “New chemical route based on sol–gel process for the synthesis of oxyapatite La9.33Si6O26,” Ceramics International, 32 (2006) 271-276.
    78.E. Jothinathan, K. Vanmeensel, J. Vleugels, O. Van der Biest, “Synthesis of nano-crystalline apatite type electrolyte powders for solid oxide fuel cells,” Journal of the European Ceramic Society, 30 (2010) 1699-1706.
    79.汪建民,陶瓷技術手冊,中華民國產業科技發展協進會 (1994)。
    80.于若軍,現代陶瓷工程學,全華科技圖書股份有限公司 (1985)。
    81.R. L. Coble, “Sintering crystalline solids. I. Intermediate and final state diffusion models,” Journal of Applied Physics, 32 (1961) 787-792.
    82.P. J. Panteix, I. Julien, D. Bernache-Assollant, P. Abélard, “Synthesis and characterization of oxide ions conductors with the apatite structure for intermediate temperature SOFC,” Materials Chemistry and Physics, 95 (2006) 313-320.
    83.E. Jothinathan, K. Vanmeensel, J. Vleugels, O. Van der Biest, “Powder synthesis, processing and characterization of lanthanum silicates for SOFC application,” Journal of Alloys and Compounds, 495 (2010) 552-555.
    84.E. Barsoukov, J. R. Macdonald, Impedance spectroscopy : theory, experiment, and applications, N.J. : Wiley-Interscience (2005) 2ed.
    85.A. J. Bard, L. R. Faulkner, Electrochemical methods fundamentals and applications, Wiley-Blackwell (2000) 2ed.
    86.A. Neumann, D. Walter, “The thermal transformation from lanthanum hydroxide to lanthanum hydroxide oxide,” Thermochimica Acta, 445 (2006) 200-204.
    87.A. Mineshige, T. Nakao, M. Kobune, T. Yazawa, H. Yoshioka, “Electrical and interfacial properties for a new class of oxide ionic conductors, La9.33+xSi6O26+1.5x,” The Electrochemical Society Transactions, 13 (2008) 31-38.
    88.B. Li, W. Liu, W. Pan, “Synthesis and electrical properties of apatite-type La10Si6O27,” Journal of Power Sources, 195 (2010) 2196-2201.
    89.P. J. Panteix, I. Julien, P. Abélard, D. Bernache-Assollant, “Influence of porosity on the electrical properties of La9.33(SiO4)6O2 oxyapatite,” Ceramics International, 34 (2008) 1579-1586.
    90.M. Aoki, Y.-M. Chiang, I. Kosacki, J.-R. Lee, H. L. Tuller, Y. J. Liu, “Solute segregation and grain-boundary impedance in high-purity stabilized zirconia,” Journal of the American Ceramic Society, 79 (1996) 1169-1180.
    91.I. Kosacki, B. Gorman and H.U. Anderson In: T.A. Ramanarayanam et al., Editors, Ionic and Mixed Conductors vol. III, Electrochemical Society, Pennington, NJ (1998).

    QR CODE