簡易檢索 / 詳目顯示

研究生: 陳顗丞
Yi-Cheng Chen
論文名稱: Al0.5CoCrFeNi2高熵合金薄膜及其氮化物特性分析
Characteristics and Analysis of Al0.5CoCrFeNi2 High Entropy Alloy Thin Film and its Nitride Film
指導教授: 丘群
Chun Chiu
口試委員: 陳士勛
Shih-Hsun Chen
李志偉
Jyh-Wei Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 125
中文關鍵詞: 高熵合金Al0.5CoCrFeNi2薄膜氮化膜
外文關鍵詞: high entropy alloys, Al0.5CoCrFeNi2, thin film, nitride film
相關次數: 點閱:255下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗使用氣體霧化法之Al0.5CoCrFeNi2高熵合金粉末為原材,利用真空熔煉法製備Al0.5CoCrFeNi2高熵合金靶材,再以DC直流濺鍍法鍍製高熵合金金屬及其氮化物薄膜,並探討工作壓力、基板偏壓及氮氣流量對薄膜微結構和機械性質的影響。
實驗結果發現使用氣體霧化法之Al0.5CoCrFeNi2高熵合金粉末製作濺鍍靶材,還是發現有些微偏析的情況。薄膜方面發現Al0.5CoCrFeNi2薄膜工作壓力由3 mtorr上升至10 mtorr,薄膜厚度減少500 nm,薄膜硬度和彈性模數分別降低3 GPa和60 GPa;在各個工作壓力的薄膜加入基板偏壓由 -0 V增加到 -150 V,硬度均增加2~ 3 GPa,在10 mtorr偏壓為 -150 V時硬度及彈性模數反而因為過多離子高速撞擊基板導致強度降低,而在3 mtorr偏壓 -150 V得到最佳濺鍍參數;後續利用此參數進行氮氣流量對薄膜影響的實驗,結果顯示通入氮氣後薄膜整體性質變得更加優異,氮氣流量為1 sccm時得到最高之硬度9.02 GPa,但通入越多氮氣後,雖然薄膜平整性稍微有所提升,可是薄膜厚度、硬度及彈性模數都隨之下降。


In this study, Al0.5CoCrFeNi2 high-entropy alloy powder was used as the raw material by gas atomization method. The powder was prepared into Al0.5CoCrFeNi2 high-entropy alloy target by vacuum melting method. High-entropy alloy film and its nitride film deposited by DC sputtering. Investigate the effects of working pressure, substrate bias and nitrogen flow on the microstructure and mechanical properties of the film.
The experimental results showed that segregation was observed in the sputtering target made by the Al0.5CoCrFeNi2 high-entropy alloy powder. The thickness of Al0.5CoCrFeNi2 film was reduced to 500nm, and the hardness and elastic modulus were reduced 3Gpa and 60Gpa, respectively, while the working pressure was increased from 3 mtorr to 10 mtorr. The film bias was added to the substrate at each working pressure by -0 V increased to -150 V, the hardness increase 2~3 GPa. When the 10 mtorr bias is -150 V, the hardness and elastic modulus were reduced due to excessive ion high-speed impact on the substrate. The best sputtering parameters were defined as 3 mtorr with bias -150 V. The subsequent experiment was carried out to investigate the effect of nitrogen flow on the film. The results show that the properties of the film become more excellent after the nitrogen gas is introduced. The highest hardness is 9.02 GPa when the nitrogen flow rate was 1 sccm. When more nitrogen gas was added, despite the roughness of the film are slightly improved, the film thickness, hardness and modulus of elasticity were all reduced.

摘要 I Abstract II 目錄 IV 圖目錄 VIII 表目錄 XIV 第一章 前言 1 第二章 文獻回顧 3 2.1 高熵合金簡介 3 2.1.1 高熵合金核心效應 4 2.1.2 價電子濃度對高熵合金相組成影響 7 2.1.3 AlxCoCrFeNi高熵合金系統 11 2.2 薄膜形成 16 2.2.1 薄膜形成機制 16 2.2.2 薄膜微觀結構 19 2.3 濺鍍原理 21 2.3.1 DC直流濺鍍法 22 2.3.1 RF射頻濺鍍法 22 2.3.1 磁控濺鍍法 22 2.4 濺鍍參數對薄膜之影響 23 2.4.1 工作壓力對薄膜之影響 23 2.4.2 基板偏壓對薄膜之影響 23 2.4.3 氮氣流量對薄膜之影響 24 2.5 總結 26 第三章 實驗方法 27 3.1 實驗流程 27 3.2 實驗步驟 27 3.3 實驗材料製備 28 3.4 實驗設備 31 3.4.1 高功率脈衝磁控濺鍍系統(High Power Impulse Magnetron Sputtering,HIPIMS) 31 3.4.2 光學顯微鏡(Optical microscope) 32 3.4.3 表面輪廓儀(α-step) 33 3.4.4 X光繞射儀(X-ray diffraction) 33 3.4.5 場效發射式掃描電子顯微鏡(FE-SEM) 35 3.4.6 原子力顯微鏡(Atomic force microscope,AFM) 36 3.4.7 奈米壓痕(Nanoindentation) 37 第四章 結果與討論 38 4.1 原材分析 38 4.1.1 靶材分析 38 4.2 工作壓力對薄膜之影響 43 4.2.1 XRD晶體結構分析 43 4.2.2 薄膜微結構分析 44 4.2.3 機械性質分析 49 4.3 基板偏壓對薄膜之影響 51 4.3.1 XRD晶體結構分析 51 4.3.2 薄膜微結構分析 53 4.3.3 機械性質分析 60 4.4 氮氣流量對薄膜之影響 66 4.4.1 XRD晶體結構分析 66 4.4.2 薄膜微結構分析 68 4.4.3 機械性質分析 74 4.5綜合討論 76 第五章 結論 77 參考文獻 78 附錄A 不同基板偏壓下之XRD分析圖 84 附錄B 不同基板偏壓之微觀結構 87 附錄C EDS mapping 90

[1] J. W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, S.Y Chang., "Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes," pp. 299-303, 2004.
[2] K.H. Huang and J.W. Yeh, "A study on the multicomponent alloy systems containing equal-mole elements," Hsinchu: National Tsing Hua University, 1996.
[3] J.W. Yeh, "Recent progress in high-entropy alloys," pp. 633-648, 2006
[4] M.H. Tsai and J.W. Yeh, "High-Entropy Alloys: A Critical Review," Materials Research Letters, vol. 2, no. 3, pp. 107-123, 2014.
[5] Y. Zhang, "Microstructures and properties of high entropy alloys," pp. 1-93, 2014.
[6] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, and S.J. Lin, "Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements," Materials Chemistry and Physics, vol. 103, no. 1, pp. 41-46, 2007.
[7] D. B. Miracle and O. N. Senkov, "A critical review of high entropy alloys and related concepts," Acta Materialia, vol. 122, pp. 448-511, 2017.
[8] 黃炳剛, "AlCrNbSiTiV高熵合金及其氮化物濺鍍薄膜之研究," 國立清華大學材料科學工程學系碩士論文, 2009.
[9] P. Dubey, V. Arya, S. Srivastava, D. Singh, and R. Chandra, "Effect of nitrogen flow rate on structural and mechanical properties of Zirconium Tungsten Nitride (Zr–W–N) coatings deposited by magnetron sputtering," Surface and Coatings Technology, vol. 236, pp. 182-187, 2013.
[10] A. A. Navid and A. M. Hodge, "Nanostructured alpha and beta tantalum formation—Relationship between plasma parameters and microstructure," Materials Science and Engineering: A, vol. 536, pp. 49-56, 2012.
[11] J. E. Sundgren, "Structure and properties of TiN coatings," Thin Solid Films, vol. 128, no. 1, pp. 21-44, 1985.
[12] H. Ren and M. Sosnowski, "Tantalum thin films deposited by ion assisted magnetron sputtering," Thin Solid Films, vol. 516, no. 8, pp. 1898-1905, 2008.
[13] J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, and H.-C. Chen, "Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content," Wear, vol. 261, no. 5, pp. 513-519, 2006.
[14] S. Guo, C. Ng, and C. T. Liu, "Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys," Journal of Alloys and Compounds, vol. 557, pp. 77-81, 2013.
[15] V. Dolique, A. L. Thomann, P. Brault, Y. Tessier, and P. Gillon, "Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy," Materials Chemistry and Physics, vol. 117, no. 1, pp. 142-147, 2009.
[16] Y. Du, Y. Lu, T. Wang, T. Li, and G. Zhang, "Effect of electromagnetic stirring on microstructure and properties of Al0.5CoCrCuFeNi alloy," Procedia Engineering, vol. 27, pp. 1129-1134, 2012.
[17] W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, "Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys," pp. 44-51, 2012.
[18] M.I. Lin, M.H. Tsai, W.J. Shen, and J.W. Yeh, "Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films," Thin Solid Films, vol. 518, no. 10, pp. 2732-2737, 2010.
[19] M. C. Gao, P. Liaw, J.-W. Yeh, and Y. Zhang, High-entropy alloys: Fundamentals and applications," pp. 1-516, 2016.
[20] T. M. Butler and M. Weaver, "Investigation of the phase stabilities in AlNiCoCrFe high entropy alloys." 2017.
[21] C. Dang, J. U. Surjadi, L. Gao, and Y. Lu, "Mechanical Properties of Nanostructured CoCrFeNiMn High-Entropy Alloy (HEA) Coating," Frontiers in Materials, vol. 5, 2018.
[22] Q. H. Li, T. M. Yue, Z. N. Guo, and X. Lin, "Microstructure and Corrosion Properties of AlCoCrFeNi High Entropy Alloy Coatings Deposited on AISI 1045 Steel by the Electrospark Process," Metallurgical and Materials Transactions A, vol. 44, no. 4, pp. 1767-1778, 2012.
[23] C.J. Tong, Y. L. Chen, S. K. Chen, J. W. Yeh, T. T Shun, C. H. Tsau, S J Lin, and S Y Chang, "Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements," Metallurgical and Materials Transactions A, vol. 36, no. 4, pp. 881-893, 2005.
[24] Y.S. Huang, L. Chen, H.W. Lui, M.H. Cai, and J.W. Yeh, "Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy," Materials Science and Engineering: A, vol. 457, no. 1, pp. 77-83, 2007.
[25] L. Gao, W. Liao, H. Zhang, J. Surjadi, D. Sun, and Y. Lu, "Microstructure, Mechanical and Corrosion Behaviors of CoCrFeNiAl0.3 High Entropy Alloy (HEA) Films," Coatings, vol. 7, no. 10, 2017.
[26] H.P. Chou, Y.S. Chang, S.K. Chen, and J.W. Yeh, "Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys," Materials Science and Engineering: B, vol. 163, no. 3, pp. 184-189, 2009.
[27] W. Liao, S. Lan, L. Gao, H. Zhang, S. Xu, J. Song , X. Wang, Y. Lu, "Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering," Thin Solid Films, vol. 638, pp. 383-388, 2017.
[28] T. K. Chen, T. T. Shun, J. W. Yeh, and M. S. Wong, "Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering," Surface and Coatings Technology, vol. 188-189, pp. 193-200, 2004.
[29] S. Guo and C. T. Liu, "Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase," Progress in Natural Science: Materials International, vol. 21, no. 6, pp. 433-446, 2011.
[30] M.H. Tsai, K. C. Chang, J.H. Li, R.C. Tsai, and A.H. Cheng, "A second criterion for sigma phase formation in high-entropy alloys," Materials Research Letters, vol. 4, no. 2, pp. 90-95, 2016.
[31] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, "Solid-Solution Phase Formation Rules for Multi-component Alloys," Advanced Engineering Materials, vol. 10, no. 6, pp. 534-538, 2008.
[32] C.Y. Hsu, J.W. Yeh, S.K. Chen, and T.T. Shun, "Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition," Metallurgical and Materials Transactions A, vol. 35, no. 5, pp. 1465-1469, 2004.
[33] S. Guo, C. Ng, J. Lu, and C. T. Liu, "Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys," Journal of Applied Physics, vol. 109, no. 10, 2011.
[34] O. N. Senkov and D. B. Miracle, "Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys," Materials Research Bulletin, vol. 36, no. 12, pp. 2183-2198, 2001.
[35] C. Zhang, F. Zhang, H. Diao, M. C.Gao, Z. Tang, J. D. Poplawsky, P. K. Liaw, "Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys," Materials & Design, vol. 109, pp. 425-433, 2016.
[36] I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, "Microstructural evolution during film growth," Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, article vol. 21, no. 5, p. 117, 2003.
[37] J. A. Venables, G. D. T. Spiller, and M. Hanbucken, "Nucleation and growth of thin films," Reports on Progress in Physics, vol. 47, no. 4, pp. 399-459, 1984.
[38] J. A. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings," Journal of Vacuum Science and Technology, vol. 11, no. 4, pp. 666-670, 1974.
[39] P. B. Barna and M. Adamik, "Fundamental structure forming phenomena of polycrystalline films and the structure zone models," Thin Solid Films, vol. 317, no. 1, pp. 27-33, 1998.
[40] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," Journal of Materials Research, vol. 7, no. 6, pp. 1564-1583, 1992.
[41] M. Li, J. Gazquez, A. Borisevich, R. Mishra, and K. M. Flores, "Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method," Intermetallics, vol. 95, pp. 110-118, 2018.

無法下載圖示 全文公開日期 2024/08/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE