簡易檢索 / 詳目顯示

研究生: 蕭奕安
Yi-An Hsiao
論文名稱: 延伸操作對PETG光擴散膜物性影響效應之研究
The influence of drawing process on optical performance of PETG film
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 吳昌謀
Chang-Mou Wu
邱智瑋
Chih-Wei Chiu
游進陽
Chin-Yang Yu
邱顯堂
Hsien-Tang Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 103
中文關鍵詞: 光擴散膜押出白化應力誘導結晶縱向延伸
外文關鍵詞: optical diffusion film, extrusion, whiten, stress induced crystallization, machine direction orientation
相關次數: 點閱:153下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這項研究中,為了使薄膜能達到更高的透光度與易於加工等優異性,使用PET系中的PETG為研究對象。實驗中以PETG(Poly(ethylene terephthalate)-glycol)為基材,PMMA(Poly(methylmethacrylate)粉末為光擴散劑,透過押出機製造薄膜和縱向延伸機(MDO)延伸後,針對薄膜相同濃度下,不同延伸工藝的光擴散膜作比較。
    使用UV光照射後觀察薄膜光老化的改變,霧度計(Haze meter)測量薄膜光學性質,萬能試驗機紀錄薄膜之拉伸等一系列之研究,探討MD方向延伸與押出機押出薄膜之差異,研究薄膜經MD方向延伸後白化的現象,熱性質的表現,與物性的差異,並透過掃描電子顯微鏡(SEM),觀察斷面的變化,並藉由水氣穿透率(WVTR)實驗檢測薄膜的阻隔性能。
    其結果證明,在PMMA在濃度為5%的情況下,未延伸膜(UDF)與一次延伸膜(DT)均具有高穿透高霧度的光擴散膜,又以UDF50um與DT100 um為最接近完美的配向性;在延伸MD方向過程成中出現薄膜白化及增韌效果,其原因為兩不相容物質之間產生破孔使介面光散射增加與應力誘導結晶,導致薄膜出現均勻白化現象,受應力誘導結晶之薄膜阻水性提高。


    The emphasis of this study lies in the benefits of PETG,a series of PET of poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) copolyesters with different molar ratios of ethylene glycol (EG) to 1,4-cyclohexanedimethanol (CHDM),which equipped transparency and ease of producing films In the experiment, PETG was used as a substrate, and PMMA (Poly(methylmethacrylate) powder was a light diffusion agent. These films were produced by an extruder ,then stretched by machine direction orientation (MDO). We compared to light diffusion films with different elongation at the same recipe. The color flex can be used for measuring material aging testing after that we used haze meter to measure the optical properties of the film, and recorded the changes in film stretching by tensile strength tests in this experiment. We discussed between the extension of the MDO and the extrusion film of the extruder .We found the process of changing transparency to opaque during the film drawing by MDO. According to the phenomena, we also tested the films thermal behavior, physical properties and the cross-section morphology displayed voiding by Scanning Electron Microscope(SEM) .To compare the water barrier properties of films ,we used water vapor transmission rate test(WVTR) to detect. The results of the experiment indicated that PMMA at a concentration of 5% , unoriented (UDF) and oriented (DT) films which were produced by extrusion were high transmittance and high haze properties as a result UDF50 um and DT100um were the closest to perfect alignment. Because of films whitening occurs in the extended MD direction, to sum up the reasons which holes are formed between two incompatible materials, which increases the interface light scattering and stress-induced crystallization, resulting in uniform whitening of the film and toughening effect, meanwhile, the films which were crystallized by MDO equipped water barrier properties.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XI 第一章 序論 1 1-1 前言 1 1-2 研究背景與動機 2 第二章 文獻回顧 8 2-1 光學膜之高分子選定 8 2-2 光擴散膜 8 2-3 聚對苯二甲酸乙二酯 10 2-3-1 聚對苯二甲酸乙二醇酯-1,4環己烷二甲醇酯 13 2-4 擴散劑 14 2-4-1 壓克力[52] 14 2-4-2 光學擴散粉 18 2-5 光學擴散膜原理 19 2-6 液晶顯示器(Liquid-Crystal Display , LCD) 20 2-7 背光模組零組件介紹 22 2-8 有機電激發光二極體(OLED) 24 2-9 Mini LED & Micro LED[55] 26 2-10 塑料薄膜成型方法 27 2-10-1 押出成型 27 2-10-2 溶液流延成型 28 2-10-3 押延成型 28 2-10-4 乾式複合 28 2-11 MDOPF 縱向延伸膜 28 2-12 取向非晶態聚對苯二甲酸乙二酯膜的結晶[59, 60] 29 第三章 實驗 30 3-1 實驗材料 30 3-2 實驗儀器 31 3-3 實驗架構 32 3-4 熱性質分析 34 3-4-1 熱重損失分析儀(TGA) 34 3-4-2 熱示差掃描熱儀(DSC) 35 3-4-3 熔融流動指數測定儀(MFI) 35 3-4-4 微型混煉機(Xplore) 36 3-5 實驗方法 37 3-5-1 薄膜製造 37 3-5-1-1 雙螺桿混煉 37 3-5-1-2 三軸共押 39 3-5-1-3 MD方向延伸機 40 3-5-2 儀器分析 42 3-5-2-1 雷射奈米粒徑電位分析儀 (Zetasizer) 42 3-5-2-2 霧度計(Haze meter) 42 3-5-2-3 萬能試驗機(Universal Tensile Tester) 43 3-5-2-4 掃描式電子顯微鏡(SEM) 44 3-5-2-5 快速耐候試驗機(UV-Condensation) 45 3-5-2-6 色差計(Color Flex) 46 3-5-2-7 水氣透過率(WVTR) 47 3-5-2-8 X光繞射(X-RAY Diffraction) 48 3-5-2-9 可視角(AOV) 48 第四章 結果與討論 50 4-1 原料鑑定 50 4-1-1 熱性質分析 51 4-1-1-1 熱重損失分析儀(TGA) 51 4-1-1-2 差示掃描量熱分析(DSC) 53 4-1-2 流變性質分析 55 4-1-2-1 熔融流動指數測定儀(MFI) 55 4-1-2-2 微型混煉機 56 4-1-3 薄膜製造 57 4-2 薄膜分析 65 4-2-1 光穿透度&霧度 65 4-2-2 可視角 68 4-2-3 黃化指數 69 4-2-4 電子顯微鏡(SEM)結果 70 4-2-5 拉伸試驗(MD) 73 4-2-6 拉伸試驗(TD) 76 4-2-7 變溫下的應力應變圖 78 4-2-8 配向性 79 4-2-9 水氣穿透率 80 4-2-10 XRD 81 第五章 結論 83 第六章 參考文獻 84

    1. 經濟部工業局. 平面顯示器材料創新整合推動計畫. 2010.
    2. 經濟部工業局. 環境友善型材料技術開發與輔導計畫. 2013.
    3. 經濟部工業局, 高分子材料產業發展計畫. 2010.
    4. Nagato, K., Injection Compression Molding of Replica Molds for Nanoimprint Lithography. Polymers, 2014. 6(3): p. 604.
    5. Wang, M.-W. and C.-C. Tseng, Analysis and fabrication of a prism film with roll-to-roll fabrication process. Optics Express, 2009. 17(6): p. 4718-4725.
    6. Ting, C., Chang, C. F., C.,, and C.P. Chou, Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process. 2008.
    7. Toray produces world's first biobased polyethylene terephthalate (PET) fibre. International Sugar Journal, 2011. 113(1356): p. 837-837.
    8. Diez, M. and L. Istasse, Dietary fibres in dogs .1. Definition and chemical composition. Annales De Medecine Veterinaire, 1996. 140(6): p. 385-391.
    9. Grozdanov, A. and G. Bogoeva-Gaceva, Transcrystallinity phenomena in PET and PAN fibres/polyhydroxybutyrate matrix systems. Composite Interfaces, 1998. 5(2): p. 179-189.
    10. Machovic, V., et al., EFFECT OF AGING OF PET FIBRE ON THE MECHANICAL PROPERTIES OF PET FIBRE REINFORCED CEMENT COMPOSITE. Ceramics-Silikaty, 2008. 52(3): p. 172-182.
    11. Ramirez, J.M. and A.B. Bunsell, Fracture initiation revealed by variations in the fatigue fracture morphologies of PA 66 and PET fibers. Journal of Materials Science, 2005. 40(5): p. 1269-1272.
    12. Song, H.H., H.J. Eon, and J.K. Keum, Cold-crystallization of oriented noncrystalline PET fibers. Abstracts of Papers of the American Chemical Society, 2005. 230: p. U3550-U3550.
    13. Tian, X.Y., et al., Preparation and properties of poly(ethylene terephthalate)/silica nanocomposites. Journal of Macromolecular Science Part B-Physics, 2006. 45(4): p. 507-513.
    14. Cuddy, S., et al., Effect of Scintillator Crystal Geometry and Surface Finishing on Depth of Interaction Resolution in PET Detectors - Monte Carlo Simulation and Experimental Results using Silicon Photomultipliers, in Medical Imaging 2010: Physics of Medical Imaging, E. Samei and N.J. Pelc, Editors. 2010, Spie-Int Soc Optical Engineering: Bellingham.
    15. Moon, J., S. Lee, and K. Oh, Polarized backlight unit using a polarization-preserving light-redirecting film for improving luminance gain. Japanese Journal of Applied Physics, 2015. 54(5): p. 7.
    16. Sun, X.S., et al., Design and Development of Novel and Practical PET Detectors for Advanced Imaging Applications. 2014 Ieee Nuclear Science Symposium and Medical Imaging Conference. 2014, New York: Ieee.
    17. Yang, J.C. and C.C. Huang, Fabrication of dual brightness enhancement structures on light guide plates using UV roll-to-plate imprinting lithography. Optik, 2013. 124(18): p. 3324-3328.
    18. Awaja, F. and D. Pavel, Recycling of PET. European Polymer Journal, 2005. 41(7): p. 1453-1477.
    19. Choi, Y.W., et al., Effects of waste PET bottles aggregate on the properties of concrete. Cement and Concrete Research, 2005. 35(4): p. 776-781.
    20. Shirakura, A., et al., Diamond-like carbon films for PET bottles and medical applications. Thin Solid Films, 2006. 494(1-2): p. 84-91.
    21. Donadi, S., et al., PET/PA Nanocomposite Blends with Improved Gas Barrier Properties: Effect of Processing Conditions. Journal of Applied Polymer Science, 2011. 122(5): p. 3290-3297.
    22. Guo, Y.F., et al., Influence of Temperature and Relative Humidity on Perm-selectivity of PET Packaging Film, in Manufacturing Science and Technology, Pts 1-3, P.C. Wang, et al., Editors. 2011. p. 1206-1210.
    23. Inagaki, N. and S. Tasaka, Oxygen gas barrier pet films formed by deposition of plasma-polymerized SiOx films. Abstracts of Papers of the American Chemical Society, 1998. 215: p. U412-U413.
    24. Soto, A. and G.A. Voyiatzis, Oriented polymeric membranes as potential alternative passive barriers to radon gas diffusion. Protection and Restoration of the Environment Vi, Vols I - Iii, Proceedings, ed. A.G. Kungolos, et al. 2002. 1097-1104.
    25. Takahashi, S., et al., Gas-permeation control by PET membranes with nanosized pores. Polymer Journal, 2004. 36(1): p. 50-+.
    26. Cornier-Rios, H., P.A. Sundaram, and J.T. Celorie, Effect of recycling on material properties of glass-filled polyethylene terephthalate. Journal of Polymers and the Environment, 2007. 15(1): p. 51-56.
    27. He, S.S., et al., Characterization of virgin and recycled poly(ethylene terephthalate) (PET) fibers. Journal of the Textile Institute, 2015. 106(8): p. 800-806.
    28. Kim, S.B., et al., Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement & Concrete Composites, 2010. 32(3): p. 232-240.
    29. Santos, P. and S.H. Pezzin, Mechanical properties of polypropylene reinforced with recycled-pet fibres. Journal of Materials Processing Technology, 2003. 143: p. 517-520.
    30. Telli, A. and N. Ozdil, Effect of Recycled PET Fibers on the Performance Properties of Knitted Fabrics. Journal of Engineered Fibers and Fabrics, 2015. 10(2): p. 47-60.
    31. Won, J.P., et al., Long-term performance of recycled PET fibre-reinforced cement composites. Construction and Building Materials, 2010. 24(5): p. 660-665.
    32. 马健, et al., 水溶性LED光扩散涂料主要配方原料的选型. 中国照明电器, 2014(2014年 12): p. 29-32.
    33. 王世卿, et al., LED照明用高透明光扩散材料. 信息记录材料, 2013(2013年 02): p. 55-59.
    34. 王海军, et al., 聚丙烯光扩散材料的制备及其表征. 塑料, 2013(2013年 06): p. 41-43.
    35. 刘言, et al., 光扩散剂及微结构对光扩散板光学性能的影响. 塑料, 2014(2014年 01): p. 49-51,26.
    36. 汪新宇, et al., LED用光扩散剂与光扩散材料研究现状. 广东化工, 2016(2016年 16): p. 283-284.
    37. 沈辰, et al., 光扩散剂粒径对PC光扩散板性能的影响. 现代塑料加工应用, 2015(2015年 01): p. 49-52.
    38. 沈辰, 常州星宇车灯股份有限公司, and 江. 常州星宇车灯股份有限公司, 213022, 光扩散剂复配工艺对PC光扩散板性能影响. 现代塑料加工应用, 2016(2016年 03): p. 41-43.
    39. 苏荣欢, et al., 玻璃LED直管灯的水性光扩散涂料涂敷工艺研究. 光源与照明, 2016(2016年 01): p. 21-24.
    40. 苏荣欢, et al., 水性LED光扩散涂料应用工艺研究. 中国照明电器, 2015(2015年 11): p. 32-37.
    41. 谢逊邦 and 广东华业包装材料有限公司, 非结晶性共聚聚酯(PETG)热收缩膜生产工艺简介. 塑料包装, 2010(2010年 04): p. 29+49-.
    42. Belik, P., et al., Modeling the Behavior of Heat-Shrinkable Thin Films. Journal of Elasticity, 2009. 95(1-2): p. 57-77.
    43. Tsunashima, K., K. Toyoda, and T. Yoshii, Chapter 6.3 in Film Processing, ed. T. Kanai, Campbell,G.A.(Ed.). 1999, Hanser Publications ,cincinnati. 321-352.
    44. Caruso, M.M., et al., Mechanically-Induced Chemical Changes in Polymeric Materials. Chemical Reviews, 2009. 109(11): p. 5755-5798.
    45. Chen, H. and J. Wu, Understanding the Underlying Physics of the Essential Work of Fracture on the Molecular Level. Macromolecules, 2007. 40(12): p. 4322-4326.
    46. Gemeinhardt, G.C. and R.B. Moore, Characterization of Ionomer-Compatibilized Blend Morphology Using Synchrotron Small-Angle X-ray Scattering. Macromolecules, 2005. 38(7): p. 2813-2819.
    47. Kinami, M., B.R. Crenshaw, and C. Weder, Polyesters with Built-in Threshold Temperature and Deformation Sensors. Chemistry of Materials, 2006. 18(4): p. 946-955.
    48. Lippert, T. and J.T. Dickinson, Chemical and Spectroscopic Aspects of Polymer Ablation:  Special Features and Novel Directions. Chemical Reviews, 2003. 103(2): p. 453-486.
    49. Pugmire, D.L., et al., Surface Characterization of Laser-Ablated Polymers Used for Microfluidics. Analytical Chemistry, 2002. 74(4): p. 871-878.
    50. Szabó, G., et al., Competitive Interactions in Aromatic Polymer/Lignosulfonate Blends. ACS Sustainable Chemistry & Engineering, 2017. 5(1): p. 410-419.
    51. Tomasko, D.L., et al., A Review of CO2 Applications in the Processing of Polymers. Industrial & Engineering Chemistry Research, 2003. 42(25): p. 6431-6456.
    52. Luan, T.L., 工業人才培訓講義:PMMA 的特性市場與光電應用. 民國九十二年五月.
    53. 錸寶科技. OLED介紹.
    54. Kulkarni, A.P., et al., Electron Transport Materials for Organic Light-Emitting Diodes. Chemistry of Materials, 2004. 16(23): p. 4556-4573.
    55. LEDinside. Micro LED 與 Mini LED 差異全解析. 2018
    56. Tabatabaei, S.H., P.J. Carreau, and A. Aji, Structure and properties of MDO stretched polypropylene. Polymer, 2009. 50(16): p. 3981-3989.
    57. F, S. and C. P, Can Chem Eng. 2008: p. 86:1103–10.
    58. Chatterjee, T., et al., Machine direction orientation of high density polyethylene (HDPE): Barrier and optical properties. Polymer, 2014. 55(16): p. 4102-4115.
    59. Ajji, A., et al., Orientation and structure of drawn poly(ethylene terephthalate). Vol. 37. 1996. 3707-3714.
    60. Qian, R., J. He, and D. Shen, Crystallization of Poly(ethylene terephthalate) from Oriented Amorphous Film. Vol. 19. 1987. 461-466.
    61. Alaboson, J., et al., POLYOLEFIN BASED STRETCHED FILMS INCORPORATING DISPERSED AGENTS FOR OPTIMIZATION OF APPLICATION. 2016.
    62. Lee, s.h. and J.Y. Lee, Light diffusion resin composition with low apparent refractive index,comprising organic or inorganic light diffusion agent with porous or hollow form of air-void, S. Chemical, Editor. 2006: Koera.
    63. chael J. Bader, F., NY , et al., FILMS HAVING LOW DENSITY AND LOW HAZE 2011.
    64. Adelung, R., et al., Strain-controlled growth of nanowires within thin-film cracks. Nature Materials, 2004. 3(6): p. 375-379.
    65. Liu, L. and X. Chen, Controlled crack arrest in brittle thin films: The effect of embedded voids. Acta Materialia, 2008. 56(20): p. 6214-6223.
    66. Prasad, S.G., A. De, and U. De, Structural and Optical Investigations of Radiation Damage in
    Transparent PET Polymer Films. International Journal of Spectroscopy, 2010.

    QR CODE