簡易檢索 / 詳目顯示

研究生: 黃筱君
Hsiao-Chun Huang
論文名稱: 碳修飾二氧化鈦承載鉑及其氧還原及氧析出電化學活性探討
Study on Carbon-coated TiO2 Supported Pt Catalyst and its Electrochemical Performance for Oxygen Reduction and Evolution Reactions
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
陳景翔
Ching-Hsiang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 126
中文關鍵詞: 碳修飾表面觸媒氧還原氧析出Magnéli phase
外文關鍵詞: Carbon-coated catalyst, oxygen reduction, oxygen evolution, Magné, li phase, bi-functional
相關次數: 點閱:208下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究製備碳修飾之二氧化鈦(TiO2)承載鉑(Pt),用於氧還原與氧析出反應的雙功能觸媒。首先,以微波輔助乙二醇還原法沉積Pt觸媒於商用TiO2 (P25)上,再利用瀝青作為碳源處理,使Pt/TiO2顆粒表面包覆碳,以抑制高溫鍛燒過程中TiO2 與Pt顆粒的聚集。碳包覆之Pt/TiO2 在純氬氣下熱處理至900℃,以碳作為還原劑,其TiO2結構由Anatase 相轉為Rutile 相,最終形成Magnéli 相,從而提高導電性。其材料的物理化學性質由一些光譜技術所量測,如XRD、XAS及Raman光譜。電化學活性測量的結果發現,對於氧氣還原反應,有碳修飾的Pt/TiO2觸媒,以15p-Pt/TiO2-900有較好的電催化活性。在0.9 V (vs RHE)下的電流密度為0.871 mA/cm2 Pt,塔弗斜率是54 mV/decade,由X-ray吸收光譜的結果證實,15p-Pt/TiO2-900中Pt 5d 軌域電子較飽滿,此有助於提升氧氣還原的電催化能力,相較於同系列其他觸媒及商業化觸媒JM20 (Pt/C),具有最佳氧氣還原電催化能力。對於氧氣析出反應而言,15p-Pt/TiO2-600與同系列其他觸媒相比,有較好的電催化活性,在1.65 V (vs RHE)下的電流密度為0.26 mA/cm2,略低於Pt/C。電化學穩定性測試顯示15p-Pt/TiO2-850觸媒相較於商業化觸媒Pt/C,有較佳的電催化穩定性及抗腐蝕能力。


    In this study, the carbon-coated Pt/TiO2 bi-functional catalysts were prepared to investigate their electrochemical performance of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). First, Pt catalysts were deposited on the commercial TiO2 particles (P25) by using microwave-assisted EG (Ethylene glycol) reduction method, and the resvltant Pt/TiO2 surface is coated by carbon using coal-tar pitch. It is envisaged that the formed carbon layer can inhibit the particle growth for both Pt and TiO2 during high-temperature calcination. The carbon-coated Pt/TiO2 catalysts were heat-treated at temperature upto 900℃ under Ar environment in which the carbon worked as a reducing agent and the phase of TiO2 was changed from Anatase to Rutile and eventually Magnéli phase, resulting in high conductivity. All chemical and physical properties were characterized using spectroscopic techniques such as X-ray diffraction, X-ray absorption spectra, and Raman spectroscopy. In the electrochemical test, for ORR, it was found that 15p-Pt/TiO2-900 showed the better performance and the specific current density of 0.871 mA/cm2Pt at 0.9 V (vs RHE) and Tafel slope of 54 mV/decade, which attributed to the higher population of electrons in Pt 5d-orbital and thus higher ORR activity compared to the other series catalysts and the commercial Pt/C catalyst. For OER, 15p-Pt/TiO2-600 showed the better performance compared to the other catalysts, and it possesses the current density of 0.26 mA/cm2 at 1.65 V (vs RHE), slightly lower than Pt/C. In the long-term operation test, 15p-Pt/TiO2-850 and 15p-Pt/TiO2-600 exhibited the better performance than commercial catalyst Pt/C, indicating that the pitch coated catalysts have good stability and anti-corrosion.

    摘要 1 Abstract 2 致謝 3 目錄 4 圖目錄 7 表目錄 11 第1章 緒論 12 1.1 前言 12 1.2 金屬空氣電池之發展 15 1.3 研究動機與目的 17 第2章 文獻回顧 19 2.1 鹼性溶液下的氧氣電催化觸媒(Oxygen Electrocatalysis) 19 2.2 碳載體觸媒開發 23 2.3 非碳載體開發 25 2.3.1 二氧化鈦(TiO2) 25 2.3.2 七氧化四鈦(Ti4O7) 28 2.4 以碳塗佈奈米粒子表面之應用 34 第3章 實驗設備與方法 38 3.1 實驗設備 38 3.2 實驗藥品 39 3.3 實驗步驟 40 3.3.1 微波輔助乙二醇還原法(Microwave-assisted Ethylene glycol Reduction method) 40 3.3.2 以瀝青修飾Pt/TiO2表面 41 3.3.3 電化學漿料與電極的製備 43 3.4 儀器原理與材料鑑定 43 3.4.1 X-ray繞射儀(XRD) 43 3.4.2 掃描式電子顯微鏡(SEM) 47 3.4.3 穿透式電子顯微鏡 (TEM) 50 3.4.4 感應偶合電漿光譜儀(ICP-AES) 51 3.4.5 拉曼散射光譜(Raman spectrum) 52 3.4.6 熱重分析儀(TGA) 54 3.4.7 X光吸收光譜原理(XAS) 55 3.4.7.1 延伸X光吸收微細結構(EXAFS) 55 3.4.7.2 X光吸收進邊緣結構(XANES) 60 3.4.7.3 數據分析 61 3.4.8 電化學原理 66 3.4.8.1 循環伏安法 66 3.4.8.2 極化曲線 70 3.4.8.3 旋轉盤電極(Rotating Disc Electrode, RDE) 71 第4章 結果 74 4.1 不同瀝青濃度下觸媒之特性分析 74 4.1.1 材料晶相之分析(XRD) 74 4.1.2 表面結構分析(Raman光譜) 77 4.1.3 表面型態差異(SEM) 80 4.1.4 碳含量之差異(TGA) 82 4.1.5 Pt loading量的計算(ICP) 83 4.2 不同熱處理溫度下觸媒之特性分析 84 4.2.1 材料晶相之分析(XRD) 84 4.2.2 表面結構分析(Raman) 86 4.2.3 表面型態差異(SEM) 88 4.2.4 表面元素分析(XPS) 89 4.2.5 碳含量之差異(TGA) 90 4.2.6 Pt loading量的計算(ICP) 92 4.2.7 X光吸收光譜之分析(XAS) 92 4.2.7.1 延伸X光吸收Pt微細結構 95 4.2.7.2 鈦之價數分析 96 4.2.8 Pt觸媒分散度探討(TEM) 97 4.3 氧氣還原反應之電化學活性量測 99 4.3.1 循環伏安分析(Cyclic voltammetry, CV) 99 4.3.2 線性掃描分析(Linear sweep voltammetry, LSV) 102 4.3.3 穩定性測試 106 4.4 氧氣析出反應之電化學活性量測 108 4.4.1 線性掃描分析 108 4.4.2 穩定性測試 111 第5章 綜合討論 114 5.1 瀝青的抑制效果與還原劑的角色 114 5.2 不同瀝青濃度對Pt/TiO2觸媒之特性分析 115 5.3 不同鍛燒溫度對Pt/TiO2觸媒特性分析 116 5.4 不同二氧化鈦載體相結構觸媒對電化學活性之影響 117 5.4.1 氧氣還原反應(ORR)之活性比較 117 5.4.2 氧氣析出反應(OER)之活性比較 120 第6章 結論 121 第7章 未來展望 122 參考文獻 123

    (1) Lee, J.; Jeong, B.; Ocon, J. D. Current Applied Physics 2013, 13, 309.
    (2) Wang, Z.-L.; Xu, D.; Xu, J.-J.; Zhang, X.-B. Chemical Society Reviews 2014, 43, 7746.
    (3) Cheng, F.; Chen, J. Chemical Society Reviews 2012, 41, 2172.
    (4) Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Nat Chem 2011, 3, 546.
    (5) Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. Science 2011, 334, 1383.
    (6) Liu, W.; Zhao, Y.; Zhang, R.; Li, Y.; Lavernia, E. J.; Jiang, Q. ChemPhysChem 2009, 10, 3295.
    (7) Zhang, P.; Chen, X. F.; Lian, J. S.; Jiang, Q. Journal of Physical Chemistry C 2012, 116, 17572.
    (8) Rasiyah, P.; Tseung, A. C. C. Journal of the Electrochemical Society 1984, 131, 803.
    (9) Chen, G.; Bare, S. R.; Mallouk, T. E. Journal of The Electrochemical Society 2002, 149, A1092.
    (10) Ross, P. N.; Sokol, H. Journal of The Electrochemical Society 1984, 131, 1742.
    (11) Meier, J. C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H. J.; Topalov, A. A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K. J. J. Beilstein Journal of Nanotechnology 2014, 5, 44.
    (12) Ma, X.; Meng, H.; Cai, M.; Shen, P. K. Journal of the American Chemical Society 2012, 134, 1954.
    (13) Leroux, F.; Dewar, P. J.; Intissar, M.; Ouvrard, G.; Nazar, L. F. Journal of Materials Chemistry 2002, 12, 3245.
    (14) Chen, X.; Mao, S. S. Chemical Reviews 2007, 107, 2891.
    (15) Sheng-Yang Huang, P. G., Sehkyu Park, and Branko N. Popov Journal of American Chemical Society 2009, 131, 13898.
    (16) Huang, S.-Y.; Ganesan, P.; Popov, B. N. Applied Catalysis B: Environmental 2011, 102, 71.
    (17) Tauster, S.; Fung, S.; Garten, R. Journal of the American Chemical Society 1978, 100, 170.
    (18) Traversa, E.; Di Vona, M. L.; Licoccia, S.; Sacerdoti, M.; Carotta, M. C.; Crema, L.; Martinelli, G. Journal of Sol-Gel Science and Technology 2001, 22, 167.
    (19) Aharon Gedanken, S. S. Journal of Physical Chemistry C 2009, 113, 18707.
    (20) Sharma, S.; Pollet, B. G. Journal of Power Sources 2012, 208, 96.
    (21) Bartholomew, R. F.; Frankl, D. Physical review 1969, 187, 828.
    (22) Ioroi, T.; Senoh, H.; Siroma, Z.; Yamazaki, S.-i.; Fujiwara, N.; Yasuda, K. ECS Transactions 2007, 11, 1041.
    (23) Li, X.; Zhu, A. L.; Qu, W.; Wang, H.; Hui, R.; Zhang, L.; Zhang, J. Electrochimica Acta 2010, 55, 5891.
    (24) Li, X.; Liu, Y.; Ye, J. Journal of Materials Science: Materials in Electronics 2016, 27, 3683.
    (25) Tsumura, T.; Hattori, Y.; Kaneko, K.; Hirose, Y.; Inagaki, M.; Toyoda, M. Desalination 2004, 169, 269.
    (26) Jiang, Z.-Z.; Wang, Z.-B.; Gu, D.-M.; Smotkin, E. S. Chemical Communications 2010, 46, 6998.
    (27) Jiang, Z.-Z.; Wang, Z.-B.; Rivera, H.; Qu, W.-L.; Gu, D.-M.; Yin, G.-P. International Journal of Hydrogen Energy 2012, 37, 10276.
    (28) Jiang, Z.-Z.; Wang, Z.-B.; Chu, Y.-Y.; Gu, D.-M.; Yin, G.-P. Energy & Environmental Science 2011, 4, 728.
    (29) Jiang, Z.-Z.; Wang, Z.-B.; Chu, Y.-Y.; Gu, D.-M.; Yin, G.-P. Energy & Environmental Science 2011, 4, 2558.
    (30) Jiang, Z.-Z.; Wang, Z.-B.; Qu, W.-L.; Rivera, H.; Gu, D.-M.; Yin, G.-P. Nanoscale 2012, 4, 7411.
    (31) Chen, S.; Wei, Z.; Qi, X.; Dong, L.; Guo, Y.-G.; Wan, L.; Shao, Z.; Li, L. Journal of the American Chemical Society 2012, 134, 13252.
    (32) Yoon, S.; Kim, H.; Oh, S. M. Journal of Power Sources 2001, 94, 68.
    (33) Wan, C.; Li, H.; Wu, M.; Zhao, C. Journal of Applied Electrochemistry 2009, 39, 1081.
    (34) Han, Y.-J.; Kim, J.; Yeo, J.-S.; An, J. C.; Hong, I.-P.; Nakabayashi, K.; Miyawaki, J.; Jung, J.-D.; Yoon, S.-H. Carbon 2015, 94, 432.
    (35) Chung, F. H. Journal of Applied Crystallography 1974, 7, 526.
    (36) Peng, L.-M.; Chen, Q.; Liang, X.; Gao, S.; Wang, J.; Kleindiek, S.; Tai, S. Micron 2004, 35, 495.
    (37) Haider, M.; Braunshausen, G.; Schwan, E. Optik 1995, 99, 167.
    (38) Steiner, L.; Andrews, P. British journal of anaesthesia 2006, 97, 26.
    (39) Rossetti, R.; Nakahara, S.; Brus, L. The Journal of Chemical Physics 1983, 79, 1086.
    (40) Yano, J.; Yachandra, V. K. Photosynthesis research 2009, 102, 241.
    (41) Tran, T. D.; Langer, S. H. Analytical Chemistry 1993, 65, 1805.
    (42) Markovic, N.; Grgur, B.; Lucas, C.; Ross, P. The Journal of Physical Chemistry B 1999, 103, 487.
    (43) Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. Science 2007, 315, 220.
    (44) Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J. Chemical Society Reviews 2010, 39, 2184.
    (45) Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. The Journal of Physical Chemistry B 2004, 108, 10955.
    (46) Stoyanov, E.; Langenhorst, F.; Steinle-Neumann, G. American Mineralogist 2007, 92, 577.
    (47) Vidal-Iglesias, F. J.; Arán-Ais, R. M.; Solla-Gullón, J.; Herrero, E.; Feliu, J. M. ACS Catalysis 2012, 2, 901.
    (48) Burwell Jr, R. L. In Manual of Symbols and Terminology for Physicochemical Quantities and Units–Appendix II; Pergamon: 1976, p 74.
    (49) Krstajic, N. V.; Vracar, L. M.; Radmilovic, V. R.; Neophytides, S. G.; Labou, M.; Jaksic, J. M.; Tunold, R.; Falaras, P.; Jaksic, M. M. Surface Science 2007, 601, 1949.

    QR CODE