簡易檢索 / 詳目顯示

研究生: 呂尚霖
Shang-lin Lyu
論文名稱: 密度泛函理論應用於甲醇在釕-鉑/含硼石墨烯表面裂解反應之研究
DFT Study of Methanol Decomposition on Ru-Pt/Boron-Doped Graphene Surface
指導教授: 江志強
Jyh-chiang Jiang
口試委員: 郭哲來
Jer-lai Kuo
許昭萍
Chao-ping Hsu
王伯昌
Bo-cheng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 110
中文關鍵詞: 密度泛函理論石墨稀; 甲醇裂解氫的吸附合金表面
外文關鍵詞: Hydrogen Adsorption, , Bimetallic Surface
相關次數: 點閱:222下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了解決能源危機,使氫能受到很大的重視。對產氫而言,因為甲醇有很高的碳氫比(H/C ratio),以及容易獲得的特性,所以被視為合適的原料。雖然甲醇分解產氫被視為一個有效率的方法,但是它仍然有一些缺點,例如產生的一氧化碳會毒化表面,以及昂貴的成本。以第一原理密度泛函理論為基礎的計算,被廣泛應用在一系列在以金屬為擔體材料表面之甲醇分解反應的研究。在此論文中,我們探究甲醇在釕-鉑/含硼石墨烯表面的分解反應。首先,我們尋找最佳化的初始反應物以及產物的結構,然後,透過微動彈性帶的方法,找出牽涉其中的中間產物以及過渡態的結構。甲醇在釕-鉑/含硼石墨烯表面的吸附能落在 -0.48 電子伏特和 -0.95電子伏特之間,比鉑(111)表面還大。接著,我們研究了可能的甲醇分解反應路徑,包含了第一步斷氧氫鍵以及第一步斷碳氫鍵。我們發現,在第一步斷氧氫鍵的反應路徑和第一步斷碳氫鍵的反路徑中,分別形成了甲氧基單體以及羥甲基單體,接著產生甲醛, 甲酸基, 和一氧化碳單體的路徑是比較可行的路徑。此外,我們考慮了甲醇跟氫原子還有甲酸基的擴散以及甲醛的脫附。計算結果顯示,從甲醇的吸附到氫分子產生的能障都低於1.00電子伏特。和其它的研究相比,透過甲醇分解產生氫分子在釕-鉑/含硼石墨烯表面是可行的。此外,我們的計算結果說明了一層的釕-鉑/含硼石墨烯奈米材料表面是一個比純鉑(111)表面更有經濟效益的觸媒。


To solve energy crisis, the hydrogen energy has been attracted extensive attention. For hydrogen production, methanol is seen as a suitable source because of its high hydrogen-to-carbon ratio (H/C) and availability. Methanol decomposition has been suggested as an efficient way to generate hydrogen but still has some drawbacks such as poisoning by adsorption of the CO produced during methanol decomposition as well as its unreasonable cost. First-principles density functional theory (DFT) calculations have been widely performed to investigate sequential methanol decomposition on metal-support surface. In this work, we have explored methanol decomposition over the Ru-Pt/boron-doped graphene surface using periodic density functional theory calculations. First, we have optimized the structures of initial adsorbed states and products. Then the intermediates and transition states between these two states have been determined via NEB method. The adsorption energies of methanol adsorbed on Ru-Pt/boron-doped graphene surface is about -0.48 eV to -0.95 eV, which is larger than on Pt(111) surface. In the following, we have systematically examined the possible pathways of methanol decomposition, including dehydrogenation via the first O-H bond breaking or the first C-H bond breaking. In the first O-H bond breaking pathway and the first C-H bond breaking pathway, methoxide (CH3O) fragment and hydroxymethyl (CH2OH) fragment formed respectively, followed by formation of CH2O, CHO, CO, are found to be the favorable reaction pathways. In addition, we consider the diffusion of methanol, hydrogen, and formyl as well as desorption of formaldehyde. The barrier of total pathway from methanol adsorption to hydrogen molecule generation is lower than 1.00 eV in our calculation. Compared to previous studies, hydrogen molecule generation via methanol decomposition is favorable on Ru-Pt/boron-doped graphene surface. Moreover, our calculated results indicate that one layer of Ru-Pt/boron-doped graphene nano-sheet is an economical catalyst compared with the pure Pt(111) surface.

ABSTRACT......................................................................I 摘要.........................................................................III 致謝..........................................................................IV INDOX OF FIGURE..............................................................VI INDOX OF TABLE..............................................................XII CHAPTER 1. INTRODUCTION.......................................................1 1.1 Background................................................................1 1.1.1 Fuel Cell Principle and Fuel Cell Types.................................1 1.1.2 The Hydrogen Generation via Methanol....................................4 1.1.3 Biomass.................................................................5 1.2 Hydrogen storage..........................................................7 1.3 Graphene..................................................................9 1.3.1 What is Graphene ?......................................................9 1.3.2 Different Forms of Carbon...............................................9 1.3.3 The Properties of Graphene and Applications............................11 1.4 Pt-Ru Bimetallic Catalysts...............................................12 1.5 This Research............................................................14 CHAPTER 2. METHODOLOGY.......................................................15 2.1 Theoretical Background...................................................15 2.1.1 Quantum Chemistry......................................................15 2.1.2 Density Functional Theory..............................................15 2.1.3 Periodic Systems.......................................................18 2.1.4 Brillouin Zone Sampling................................................21 2.1.5 Plane Wave Basis Set...................................................24 2.1.6 Pseudopotential........................................................27 2.1.7 Ultrasoft-pseudopotential..............................................31 2.1.8 Projected Augmented Wave (PAW).........................................33 2.1.9 Generalized Gradient Approximation (GGA)...............................35 2.1.10 Nudged Elastic Band Method (NEB)......................................35 2.2 Computational Details....................................................39 2.2.1 Method.................................................................39 2.2.2 Surface Model..........................................................40 CHAPTER 3. RESULTS AND DISCUSSION............................................42 3.1 Adsorption...............................................................42 3.1.1 Methanol on Ru-Pt/boron-doped graphene surface.........................44 3.1.2 Adsorbed Intermediates of Methanol Decomposition.......................45 3.2 Reaction Pathways for Methanol Decomposition.............................59 3.2.1 Methanol Decomposition on Ru-Pt/Boron-Doped Graphene Surface...........59 CHAPTER 4. CONCLUSION........................................................88 REFERENCE....................................................................91

1. Grove, W. R. Phil. Mag. Ser. 1839, 314, 127.
2. Appleby, A. J. J. Power Sources 1990, 29, 3.
3. de, B. F. Green Chem. 2005, 7, 132.
4. Perryf, M. L. F., T. f. J. Electrochem. Soc. 2002, 7, 149.
5. Cheng, W.-H. Acc. Chem. Res. 1999, 32, 685.
6. Mattos, L. V.; Jacobs, G.; Davis, B. H.; Noronha, F. B. Chem. Rev. 2012.
7. Li, M.; Guo, W.; Jiang, R.; Zhao, L.; Shan, H. Langmuir 2009, 26, 1879.
8. Jiang, R.; Guo, W.; Li, M.; Zhu, H.; Zhao, L.; Lu, X.; Shan, H. J. Mol. Catal. A: Chem. 2011, 344, 99.
9. Geissler, K.; Newson, E.; Vogel, F.; Truong, T.-B.; Hottinger, P.; Wokaun, A. PCCP 2001, 3, 289.
10. Chin, Y.-H.; Dagle, R.; Hu, J.; Dohnalkova, A. C.; Wang, Y. Catal. Today 2002, 77, 79.
11. Liu, S.; Takahashi, K.; Ayabe, M. Catal. Today 2003, 87, 247.
12. Jenkins, J. W. S., E. Platinum Metal Rev. 1989, 33, 118.
13. Gottesfeld, S.; Pafford, J. J. Electrochem. Soc. 1988, 135, 2651.
14.Lucia Lucian, A.; Argyropoulos Dimitris, S.; Adamopoulos, L.; Gaspar Armindo, R. In Materials, Chemicals, and Energy from Forest Biomass; American Chemical Society: 2007; Vol. 954, p 2.
15. Zhou, W.; Swanson, L.; Moyeda, D.; Xu, G. Energy & Fuels 2010, 24, 4510.
16. Deretsky, Z. National Science Foundation (NSF).
17. Strobel, R.; Garche, J.; Moseley, P. T.; Jorissen, L.; Wolf, G. J. Power Sources 2006, 159, 781.
18. Wu, H.-Y.; Fan, X.; Kuo, J.-L.; Deng, W.-Q. J. Phys. Chem. C 2011, 115, 9241.
19. Lopez-Corral, I.; German, E. a.; Juan, A.; Volpe, M. a. A.; Brizuela, G. P. J. Phys. Chem. C 2011, 115, 4315.
20. Wang, L.; Yang, R. T. J. Phys. Chem. C 2008, 112, 12486.
21. Pham, T. L.; Dung, P. V.; Sugiyama, A.; Duc, N. D.; Shimoda, T.; Fujiwara, A.; Chi, D. H. Computational Materials Science 2010, 49, S15.
22. Reich, S.; Maultzsch, J.; Thomsen, C.; Ordej; oacute; n, P. Phys. Rev. B 2002, 66, 035412.
23. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
24. Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
25. Oberlin, A.; Endo, M.; Koyama, T. J. Cryst. Growth 1976, 32, 335.
26. Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.
27.Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605.
28. Geim, A. K.; Novoselov, K. S. Nat Mater 2007, 6, 183.
29. Al-Mashat, L.; Shin, K.; Kalantar-zadeh, K.; Plessis, J. D.; Han, S. H.; Kojima, R. W.; Kaner, R. B.; Li, D.; Gou, X.; Ippolito, S. J.; Wlodarski, W. J. Phys. Chem. C 2010, 114, 16168.
30. Heller, I.; Chatoor, S.; Mannik, J.; Zevenbergen, M. A. G.; Oostinga, J. B.; Morpurgo, A. F.; Dekker, C.; Lemay, S. G. Nano Lett. 2010, 10, 1563.
31. Li, W.; Tan, C.; Lowe, M. A.; Abruna, H. c. D.; Ralph, D. C. ACS Nano 2011, 5, 2264.
32. Rangel, N. L.; Gimenez, A.; Sinitskii, A.; Seminario, J. M. J. Phys. Chem. C 2011, 115, 12128.
33. Schneider, G. g. F.; Kowalczyk, S. W.; Calado, V. E.; Pandraud, G. g.; Zandbergen, H. W.; Vandersypen, L. M. K.; Dekker, C. Nano Lett. 2010, 10, 3163.
34. Yoo, J. J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Mohana Reddy, A. L.; Yu, J.; Vajtai, R.; Ajayan, P. M. Nano Lett.2011, 11, 1423.
35. Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H. Y.; Grill, A.; Avouris, P. Science 2010, 327, 662.
36. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312.
37. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Nature Materials 2007, 6, 652.
38. Schmidt, T. J.; Noeske, M.; Gasteiger, H. A.; Behm R. J. J. Electrochem. Soc. 1998, 145, 925.
39. Kua, J.; Goddard, W. A. J. Am. Chem. Soc. 1999, 121, 10928.
40. Binder, H.; Kbhling, A.; Sandstede, G. In From Electrocatalysis to Fuel Cells, Sandstede, G., Ed.; University of Washington Press: Seattle, 1972; pp. 43.
41. McNicol, B. D.; Short, R. T. J. Electroanal. Chem. 1977, 81, 249.
42. Dong, L.; Gari, R. R. S.; Li, Z.; Craig, M. M.; Hou, S. Carbon 2010, 48, 781.
43. Viva, F. A.; Bruno, M. M.; Jobbagy, M.; Corti, H. R. J. Phys. Chem. C 2011, 116, 4097.
44. Lee, Y. H.; Lee, G.; Shim, J. H.; Hwang, S.; Kwak, J.; Lee, K.; Song, H.; Park, J. T. Chem. Mater. 2006, 18, 4209.
45. Lee, S. H.; Kakati, N.; Jee, S. H.; Maiti, J.; Yoon, Y.-S. Mater. Lett. 2011, 65, 3281.
46. Prabhuram, J.; Zhao, T. S.; Tang, Z. K.; Chen, R.; Liang, Z. X. J. Phys. Chem. B 2006, 110, 5245.
47. Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864.
48. Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.
49. Villullas, H. M.; Mattos-Costa, F. I.; Bulhoes, L. O. S. J. Phys. Chem. B 2004, 108, 12898.
50. Brillouin, L. Wave Propagation in Periodic Structures; Dover: New York, 1946.
51. Lebowitz, J. L.; Lieb., E. H. Phys. Rev. Lett. 1969, 22, 631.
52. Bouckaert, L. P.; Smoluchowski, R.; Wigner, L. P. Phys. Rev. 1969, 50, 58.
53. Chadi, D. J. Phys. Rev. B 1977, 16, 1746.
54. Evarestov, R. A.; Smirnov, V. P. Phys. Stat. Sol. 1983, 119, 9.
55. Froyen, S. Phys. Rev. B 1989, 39, 3168.
56. Robertson, I. J.; Payne, M. C. J. Phys.: Condens. Matter 1990, 2, 9837.
57. Robertson, I. J.; Payne, M. C. J. Phys.: Condens. Matter 1991, 3, 8841.
58. Denteneer, P. J. H.; van Haeringer, W. J. Phys. Cond. Matt. 1985, 18, 4127.
59. Chadi, D. L.; Cohen, M. L. Phys. Rev. B 1973, 8, 5747.
60. Troullier, N.; Martins, J. L. Phys. Rev. B 1991, 43, 1993.
61. Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
62. Hamann, D. R.; Schluter, M.; Chiang, C. Phys. Rev. Lett. 1979, 43, 1494.
63. Bachelet, G. B.; Hamann, D. R.; Schluter, M. Phys. Rev. B 1982, 26, 4199.
64. Vanderbilt, D. Phys. Rev. B 1985, 32, 8412.
65. Troullier, N.; Martins, J. L. Solid State Comm. 1990, 74, 613.
66. Goedecker, S. ; Teter, M.; Hutter, J. Phys. Rev. B 1996, 54, 1703.
67. Hartwigsen, C.; Goedecker, S.; Hutter, J. Phys. Rev. B 1998, 58, 3641.
68.Laasonen, K.; Pasquarello, A.; Car, R.; Lee, C.; Vanderbilt, D. Phys. Rev. B 1993, 47,10142.
69. Burke, P. K.; Ernzerhof , M. Phys. Rev. Lett. 1996, 77, 18.
70. Blochl, P. E. Phys. ReV. B 1994, 50, 17953.
71. Blochl, P. E. J. Phys. Chem. 1995, 99, 7422.
72. Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
73. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
74. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. Phys. Rev. B 1992, 46, 6671.
75. Jonsson, H.; Mills, G.; Jacobsen, K. W. Nudged Elastic Band Method for Finding Minimum Energy Paths of Transition, In Classical and Quantum Dynamics in Condensed Phase Simulations, Berne, B. J.; Ciccotti, G.; Coker, D. F., Eds.; World Scientific, 1998.
76. Mills, G.; Jonsson, H. Phys. Rev. Lett. 1994, 72, 1124.
77. Mills, G.; Jonsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305.
78. White, K. A.; Bird, D. M. Phys. Rev. B 1994, 50, 4954.
79. Branger, V.; Pelosin, V.; Badawi, K. F.; Goudeau, P. Thin Solid Films 1996, 275, 22.
80. Structure data of Elements and Intermetallic phases, Springer, Berlin, 1977, Vol IIIb.
81. Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett. 1977, 49, 225.
82. (a) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15. (b) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169.
83.(a) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 48, 13115. (b) Kresse, G.; Hafner, J. J. Phys.: Condens. Matter 1994, 6, 8245.
84. Perdew, J. P.; Wang, Y. Phys. Rev. B 1986, 33, 8800.
85. Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 46, 6671.
86. Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
87. Blochl, P. E. Phys. Rev. B 1994, 50, 17953.
88. Lee, B. Y., National Taiwan University of Science and Technology, 2011.
89. Cervenka, J.; Flipse, C. F. J. Journal of Physics: Conference Series 2007, 61, 190.
90. Naeini, J. G.; Way, B. M.; Dahn, J. R.; Irwin, J. C. Phys. Rev. B 1996, 54, 144.
91. Desai, S. K.; Neurock, M.; Kourtakis, K. J. Phys. Chem. B 2002, 106, 2559.
92. Zhou, Y.-H.; Lv, P.-H.; Wang, G.-C. J. Mol. Catal. A: Chem. 2006, 258, 203.
93. Gu, X.-K.; Li, W.-X. J. Phys. Chem. C 2010, 114, 21539.
94. Smith, G. K.; Lin, S.; Lai, W.; Datye, A.; Xie, D.; Guo, H. Surf. Sci. 2011, 605, 750.
95. Davis, J. L.; Barteau, M. A. J. Am. Chem. Soc. 1989, 111, 1782.
96. Abbas, N. M. M., R. J. Appl. Surf. Sci. 1981, 7, 241.
97. Bessac, F.; Alary, F.; Poteau, R.; Heully, J.-L.; Daudey, J.-P. J. Phys. Chem. A 2003, 107, 9393.
98. Nieuwenhuys, B. E. Surf. Sci. 1981, 105, 505.
99. Chen, Y.-Y.; Dong, M.; Qin, Z.; Wen, X.-D.; Fan, W.; Wang, J. Mol. Catal. A: Chem. 2011, 338, 44.
100. Mehmood, F.; Greeley, J.; Zapol, P.; Curtiss, L. A. J. Phys. Chem. B 2010, 114, 14458.
101. Mehmood, F.; Greeley, J.; Curtiss, L. A. J. Phys. Chem. C 2009, 113, 21789.
102. Chen, W.-K.; Liu, S.-H.; Cao, M.-J.; Yan, Q.-G.; Lu, C.-H. THEOCHEM 2006, 770, 87.
103. Greeley, J.; Mavrikakis, M. J. Catal. 2002, 208, 291.
104. Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc 2004, 126, 3910.
105. Pankewitz, T.; Klopper, W. Chem. Phys. Lett. 2010, 498, 345.

QR CODE