簡易檢索 / 詳目顯示

研究生: 林浼憓
Mei-Huei Lin
論文名稱: 以硫化酯為輔助基之立體選擇性醣鍵結反應
A stereoselective glycosylation assisted by using thiocarbonyl as the auxiliary group
指導教授: 王正中
Cheng-Chung Wang
蔡伸隆
Shen-Long Tsai
口試委員: 何郡軒
Jinn-Hsuan Ho
李文山
Wen-Shan Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 320
中文關鍵詞: 醣鍵結反應硫化酯輔助基立體選擇性
外文關鍵詞: glycosylation, thiocarbonyl, auxiliary group, stereoselective
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

去氧醣衍生物在生物體中一直以來都扮演著重要的角色,然而其生物機制及相關的藥物開發卻常侷限於有機合成之低產率和低選擇性。因此本篇論文將使用常見的自由基前驅物-硫代甲酸苯酯官能基作為主軸並以三個方向進行探討。第一部分將開發出一鍋化合成策略以達成有效合成硫代甲酸苯酯基之醣予體。第二部分則藉由鄰基效應之參與,使硫代甲酸苯酯基之氯化物醣予體可以控制醣鍵結反應之選擇性。最後第三部分我們將藉由低溫核磁共振實驗了解醣鍵結反應之機制,並將加以應用於獲得更廣泛且具高選擇性之α-雙醣分子。


Deoxy sugar is a core structure dominating an important role in living organisms. However, the mechanism is still unclear because of low yield and poor selectivity in organic synthesis. To achieve these challenges, a one pot synthetic strategy was established by using phenyl thionocarbonyl group. First, with a single step, the phenoxythiocarbonyl donor, a precursor of deoxy sugar, was obtained in high yield. Secondly, phenoxythiocarbonyl donor was employed to achieve stereoselective glycosylation by using neighboring group participation. Finally, the reaction mechanism was clarified in low temperature NMR experiments, and phenyl thionocarbonyl group was applied to control high -selective glycosylation in wide disaccharide molecules.

謝 誌 i 摘 要 iii ABSTRACT iv 縮寫表 v 目錄 viii 圖目次 x 表目次 xi 方程式目次 xii 流程目次 xiii 第一章 緒論 1 1.1引言 1 1.2 有機合成醣的優點及挑戰 3 1.3 目前去氧醣常見的合成方法 4 1.3.1去鹵素法 (Deoxyhalo method) 5 1.3.2 磺酸鹽法 (Sulfonates method) 5 1.3.3 烯醣法 (Glycals method) 6 1.3.4 自由基法 (Radical method) 7 1.4 醣鍵結反應及離去基與促進劑之探討 10 1.4.1 醋酸鹽 (Acetate) 12 1.4.2 醣基鹵化物 (Halide) 13 1.4.3 三氯乙醯胺 (Trichloroacetimidate) 15 1.4.4 硫苷醣 (Thioglycoside) 17 1.5 選擇性控制 19 1.5.1 溶劑效應 (Solvent effect) 19 1.5.2 利用鄰基效應之合成策略獲得1,2-反式去氧醣 21 1.6研究動機 22 第二章 結果與討論 24 2.1硫代甲酸苯酯基醣予體之一鍋化合成策略 24 2.1.1硫代甲酸苯酯化反應之開發 24 2.1.2建立不同的硫代甲酸苯酯衍生物 25 2.1.3一鍋化合成策略之開發 27 2.1.4 可能之反應機制 31 2.2具硫代甲酸苯酯基的醣基氯化物之醣鍵結反應探討 32 2.2.1官能基效應之探討 33 2.2.2醣受體效應之探討 34 2.2.3 可能之反應機制 36 2.3新型保護基之開發 37 2.3.1離去基之探討 38 2.3.2反應機構探討 43 2.3.3官能基效應之探討 48 2.3.4醣受體效應之探討 52 2.3.5可能之反應機制 53 第三章 結論 56 第四章 參考資料 57 第五章 實驗部分及光譜 62

1. Dwek, R. A. Chem. Rev. 1996, 96, 683-720.
2. Jan, H.; Anki, G.; E, B. M. Immunol. Cell Biol. 2005, 83, 694-708.
3. Royston, J. Biotechnol. Prog. 2005, 21, 11-16.
4. K., B. B.; L., S. R. J. Leukocyte Biol. 1986, 40, 97-111.
5. Dimler, R. J.; Link, K. P. J. Biol. Chem. 1943, 150, 345-349.
6. Cobb, B. A.; Kasper, D. L. Cell. Microbiol. 2005, 7, 1398-1403.
7. Pragani, R.; Stallforth, P.; Seeberger, P. H. Org. Lett. 2010, 12, 1624-1627.
8. Tzianabos, A.; Wang, J. Y.; Kasper, D. L. Carbohydr. Res. 2003, 338, 2531-2538.
9. Ohtsubo, K.; Marth, J. D. Cell 2006, 126, 855-867.
10. Pinho, S. S.; Reis, C. A. Nat. Rev. Cancer 2015, 15, 540-555.
11. Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A. Science 2001, 291, 2370-2376.
12. Seeberger, P. H. Nat. Chem. Biol. 2009, 5, 368-372.
13. Schnaar, R. L. Arch Biochem Biophys 2004, 426, 163-172.
14. Hou, D.; Lowary, T. L. Carbohydr. Res. 2009, 344, 1911-1940.
15. Iyer, A. K. V.; Zhou, M.; Azad, N.; Elbaz, H.; Wang, L.; Rogalsky, D. K.; Rojanasakul, Y.; O'Doherty, G. A.; Langenhan, J. M. ACS Med. Chem. Lett. 2010, 1, 326-330.
16. Sastry, M.; Patel, D. J. Biochemistry 1993, 32, 6588-6604.
17. Tom, D.; Wim, S.; Pavla, B.; Vladimir, K.; Lubbert, D.; Vanessa, E. F.; Alexander, S. CHEM-EUR J 2012, 18, 10786-10801.
18. Xu, L.; Qi, T.; Xu, L.; Lu, L.; Xiao, M. J. Carbohydr. Chem. 2016, 35, 1-23.
19. Seeberger, P. H.; Finney, N.; Rabuka, D.; Bertozzi, C. R. Chemical and enzymatic synthesis of glycans and glycoconjugates; ,3rd edition ed. Essentials of Glycobiology, 2009.
20. de Lederkremer, R. M.; Marino, C. In Adv. Carbohydr. Chem. Biochem.; Horton, D., Ed.; Academic Press: 2007; Vol. 61, 143-216.
21. Hanessian, S. Adv. Carbohydr. Chem. 1967, 21, 143-207.
22. Szarek, W. A.; Zamojski, A.; Gibson, A. R.; Vyas, D. M.; Jones, J. K. N. Can. J. Chem. 1976, 54, 3783-3793.
23. Hitoshi, A.; Nobuhiko, U.; Yoshio, M. Bull. Chem. Soc. Jpn. 1972, 45, 567-569.
24. Ward, D. E.; Kaller, B. F. J. Org. Chem. 1994, 59, 4230-4238.
25. Baer, H. H.; Hanna, H. R. Carbohydr. Res. 1982, 110, 19-41.
26. Kobayashi, S.; Furukawa, J.-i.; Sakai, T.; Sakairi, N. Carbohydr. Res. 2002, 337, 1047-1053.
27. Lindhorst, T. K. Essentials of carbohydrate chemistry and biochemistry; Wiley-Vch Weinheim, 2007.
28. Ferrier, R. J.; Hoberg, J. O. In Adv. Carbohydr. Chem. Biochem.; Academic Press: 2003; Vol. 58, 55-119.
29. Chong, Y.; Chu, C. K. Carbohydr. Res. 2002, 337, 397-402.
30. Zhang, Y.; Dong, D.; Zhou, T.; Zhang, Y. Tetrahedron 2010, 66, 7373-7383.
31. Cromer, R.; Spohr, U.; Khare, D. P.; LePendu, J.; Lemieux, R. U. Can. J. Chem. 1992, 70, 1511-1530.
32. Xiao, S.; Yang, M.; Yu, F.; Zhang, L.; Zhou, D.; Sinaÿ, P.; Zhang, Y. Tetrahedron 2013, 69, 4053-4060.
33. Xiao, S. L.; Zhou, D. M.; Yang, M.; Yu, F.; Zhang, L. H.; Sinaÿ, P.; Zhang, Y. M. Chin. Chem. Lett. 2012, 23, 1315-1318.
34. Jackowski, O.; Chrétien, F.; Didierjean, C.; Chapleur, Y. Carbohydr. Res. 2012, 356, 93-103.
35. Rituparna, D.; Balaram, M. ChemistryOpen 2016, 5, 401-433.
36. Demchenko, A. V. Handbook of chemical glycosylation: advances in stereoselectivity and therapeutic relevance; John Wiley & Sons, 2008.
37. Bokor, É.; Kun, S.; Goyard, D.; Tóth, M.; Praly, J.-P.; Vidal, S.; Somsák, L. Chem. Rev. 2017, 117, 1687-1764.
38. Whitfield, D. M.; Douglas, S. P. Glycoconjugate J. 1996, 13, 5-17.
39. Igarashi, K. In Adv. Carbohydr. Chem. Biochem.; Stuart Tipson, R., Horton, D., Eds.; Academic Press: 1977; Vol. 34, 243-283.
40. Pathak, A. K.; Besra, G. S.; Crick, D.; Maddry, J. A.; Morehouse, C. B.; Suling, W. J.; Reynolds, R. C. Bioorg. Med. Chem. 1999, 7, 2407-2413.
41. Ohmori, K.; Ohrui, H.; Suzuki, K. Tetrahedron Lett. 2000, 41, 5537-5541.
42. Bourke, J.; Brereton, C. F.; Gordon, S. V.; Lavelle, E. C.; Scanlan, E. M. Org. Biomol. Chem. 2014, 12, 1114-1123.
43. Hadd, M. J.; Gervay, J. Carbohydr. Res. 1999, 320, 61-69.
44. Huang, L.-D.; Lin, H.-J.; Huang, P.-H.; Hsiao, W.-C.; Raghava Reddy, L. V.; Fu, S.-L.; Lin, C.-C. Org. Biomol. Chem. 2011, 9, 2492-2504.
45. Ando, H.; Shimizu, H.; Katano, Y.; Koike, Y.; Koizumi, S.; Ishida, H.; Kiso, M. Carbohydr. Res. 2006, 341, 1522-1532.
46. Pozsgay, V.; Glaudemans, C. P. J.; Robbins, J. B.; Schneerson, R. Tetrahedron 1992, 48, 10249-10264.
47. Pazynina, G. V.; Tsygankova, S. V.; Bovin, N. V. Mendeleev Commun. 2015, 25, 250-251.
48. R., S. R.; Josef, M. Angew. Chem. 1980, 92, 763-764.
49. R., S. R.; Josef, M. Angew. Chem. 1980, 19, 731-732.
50. Stick, R. V.; Williams, S. J. In Carbohydrates: The Essential Molecules of Life (Second Edition); Elsevier: Oxford, 2009, 133-202.
51. Yu, C.-S.; Wang, H.-Y.; Chiang, L.-W.; Pei, K. Synthesis 2007, 2007, 1412-1420.
52. Nakagawa, T.; Nishi, Y.; Kondo, A.; Shirai, Y.; Honda, C.; Asahi, M.; Tanimoto, T. Carbohydr. Res. 2011, 346, 1792-1800.
53. Crich, D.; Vinogradova, O. J. Am. Chem. Soc. 2007, 129, 11756-11765.
54. Shao‐Ru, L.; Yen‐Hsun, L.; Jiun‐Han, C.; Chih‐Yueh, L.; Tony, M. K. K. Angew. Chem., Int. Ed. 2011, 50, 7315-7320.
55. Maity, S. K.; Basu, N.; Ghosh, R. Carbohydr. Res. 2012, 354, 40-48.
56. C., L. Y.; T., L. R. J. Chin. Chem. Soc. 1999, 46, 283-291.
57. Satoh, H.; Hansen, H. S.; Manabe, S.; van Gunsteren, W. F.; Hünenberger, P. H. J. Chem. Theory Comput. 2010, 6, 1783-1797.
58. Shimizu, H.; Yoshimura, Y.; Hinou, H.; Nishimura, S.-I. Tetrahedron 2008, 64, 10091-10096.
59. Gouliaras, C.; Lee, D.; Chan, L.; Taylor, M. S. J. Am. Chem. Soc. 2011, 133, 13926-13929.
60. Guo, J.; Ye, X. S. Molecules 2010, 15, 7235-7265.
61. Deslongchamps, P. Elmsford, NY 1983.
62. Jacquinet, J.-C.; Sinaÿ, P. Carbohydr. Res. 1987, 159, 229-253.
63. Huang, W.; Zhou, Y.-Y.; Pan, X.-L.; Zhou, X.-Y.; Lei, J.-C.; Liu, D.-M.; Chu, Y.; Yang, J.-S. J. Am. Chem. Soc. 2018, 140, 3574-3582.
64. Crich, D.; Smith, M. J. Am. Chem. Soc. 2001, 123, 9015-9020.

無法下載圖示 全文公開日期 2023/06/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE