簡易檢索 / 詳目顯示

研究生: 陳冠廷
Guan-Ting Chen
論文名稱: 錳系氧化物觸媒材料用於鋅空氣電池陰極之研究
Study of Manganese-based Oxide Catalysts as the Cathode for Zinc-Air Battery
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 周宏隆
Hung-Lung Chou
王丞浩
Chen-Hao Wang
吳錦貞
Ching-Chen Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 136
中文關鍵詞: 鋅空氣電池錳系氧化物觸媒陰極
外文關鍵詞: Zinc-Air Battery, Manganese-based Oxide Catalysts, Cathode
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討錳系氧化物觸媒應用於鋅空氣電池陰極端之氧氣還原反應(ORR)活性,實驗分為三部分討論,第一部分材料選用純相系列之錳系觸媒,第二部分是將乾電池放電過後之正極錳材以不同溫度進行燒結而得一系列回收乾電池之錳系觸媒,試圖將材料還原至最初狀態,第三部分則使用不同燒結溫度而得一系列錳礦之錳系觸媒,將以上各種錳系觸媒作為空氣電極並進行電化學活性分析。


    The research primarily discuss the oxygen reduction reaction of manganese-based oxide catalysts as the cathode for zinc-air battery.The choise of catalysts was divided into three parts, in the first part, choosing a series of pure phase materials; the second part, sintering the discharged dry battery powder for different temperature to obtain a series of dry battery materials, and attempting reducting this material to the original condition; the third part, sintering the manganese ore to acquire a series of manganese ore materials. Using these catalysts as the cathode and executing the electrochemically active analysis.

    誌謝 ................................................................... I 摘要 .................................................................. II ABSTRACT ............................................................. III 目錄 .................................................................. IV 圖目錄 .............................................................. VIII 表目錄 .............................................................. XIII 第一章 序論 ............................................................ 1 1.1 前言 .............................................................. 1 1.2 儲能技術............................................................ 2 1.3 空氣電池............................................................ 3 1.4 研究動機 ........................................................... 4 第二章 文獻回顧 ........................................................ 5 2.1 電池簡介 ........................................................... 5 2.1.1 化學電池原理 ..................................................... 8 2.1.2 一次電池 ......................................................... 9 2.1.3 二次電池 ........................................................ 10 2.1.4 燃料電池 ........................................................ 12 2.2 金屬空氣電池 ...................................................... 13 2.2.1 金屬空氣電池發展史................................................ 13 2.2.2 金屬空氣電池之特性................................................ 13 2.2.3 金屬空氣電池之機制................................................ 15 2.3 鋅空氣電池 ........................................................ 16 2.3.1 陽極之氧化反應 .................................................. 17 2.3.2 陰極之還原反應 .................................................. 18 2.3.3 鋅陽極之添加劑 .................................................. 19 2.3.4 電解液 ......................................................... 20 2.4 空氣電極之組成 .................................................... 20 2.4.1 氣體擴散層 ...................................................... 22 2.4.2 集電網 ......................................................... 23 2.4.3 催化層 ......................................................... 23 2.4.4 黏結劑 ......................................................... 23 2.4.5 碳材 ........................................................... 23 2.4.6 空氣陰極之觸煤 .................................................. 24 2.5 鈣鈦礦 ........................................................... 27 2.6 二氧化錳 ......................................................... 29 第三章 實驗程序 ....................................................... 33 3.1 實驗流程 ......................................................... 33 3.2 實驗藥品 ......................................................... 34 3.3 實驗設備 ......................................................... 35 3.4 實驗方法 ......................................................... 36 3.4.1 以固態法製備α 相二氧化錳觸煤粉末.................................. 36 3.4.2 製備商用觸媒粉末 ................................................ 37 3.4.3 製備乾電池回收系列觸媒粉末 ....................................... 38 3.4.4 製備錳礦系列觸媒粉末 ............................................ 39 3.4.5 空氣陰極之製備 .................................................. 40 3.4.6 檢測儀器 ....................................................... 41 3.4.7 空氣陰極之氧氣還原活性測試 ....................................... 42 3.4.8 鋅空氣電池之全電池充放電測試 ..................................... 43 3.4.9 空氣陰極之電化學阻抗頻譜分析 ..................................... 44 第四章 結果與討論 ..................................................... 45 4.1 錳系氧化物之陰極觸媒材料製備與鑑定分析 .............................. 46 4.1.1 以純相系列材料製備錳系氧化物之陰極觸媒 ............................ 46 4.1.2 以回收乾電池之正極含錳系列材料製備錳系氧化物之陰極觸媒 ............. 56 4.1.3 以錳礦系列材料製備錳系氧化物之陰極觸媒 ............................ 61 4.2 空氣陰極之電化學活性分析 ........................................... 66 4.2.1 純相系列與錳礦系列材料之線性掃描伏安法(LSV)測試.................... 66 4.2.2 回收乾電池系列材料之線性掃描伏安法(LSV)測試........................ 67 4.3 組裝全電池充放電循環壽命分析 ....................................... 71 4.3.1 純相系列材料之充放電循環壽命測試 ................................. 71 4.3.2 回收乾電池系列材料之充放電循環壽命測試 ............................ 78 4.3.3 錳礦系列材料之充放電循環壽命測試 ................................. 84 4.4 全電池電化學阻抗頻譜(EIS)分析....................................... 88 4.5 組裝鋅空氣電池之全電池放電測試 ..................................... 104 第五章 結論與未來展望 ................................................. 109 5.1 實驗結論 ......................................................... 109 5.2 未來展望 ..........................................................110 參考文獻 ............................................................. 111

    1. 歷年發電量及結構,台灣電力公司,2017。
    2. Simon Evans, “The EU got less electricity from coal than renewables in 2017”, CarbonBrief, 2018.
    3. 左峻德,「台灣儲能技術應用及產業」,中國電機工程學會大規模儲能技術的發展與應用研討會,2011。
    4. 張雲朋,「燃料電池:由空氣產生電能的新能源─鋅空氣燃料電池」,科學發展,367期,頁12-15,2003/7月。
    5. 張育堂、陳藹然,「科學 online ─賈法尼電池」,2011。
    6. 漢聲精選目擊者叢書,「化學」,漢聲雜誌社,1996。
    7. C. Liu, A. Ridenour, J.S. Lai, “Modeling and Control of a Novel Six-Leg Three-Phase High-Power Converter for Low Voltage Fuel Cell Applications”, IEEE Transactions on Power Electronics, 21(5), 1292-1300, Sep. 2006.
    8. 李世興,「電池活用手冊」,全華,1999。
    9. D. Linden, “Handbook of Batteries”, McGraw-Hill Publishing company, New York, 1994.
    10. 陳鐘誠,「電池的歷史和原理」,泛科學,2013。
    11. 李文雄,「鋰電池─E世代的能源」,科學發展,362期,2003/2月。
    12. Grove, William Robert, “On a Gaseous Voltaic Battery”, Philosophical Magazine and Journal of Science, 21(140), 417-420, 1842.
    13. 楊志忠、林頌恩、韋文誠,「燃料電池的發展現況」,科學發展,367期,2003/7月。
    14. J. Goldstein, I. Brown, B. Koretz, “New developments in the Electric Fuel Ltd. zinc/air system”, Journal of Power Sources, 171–179, Jul. 1999.
    15. 郭炳焜、李新海、楊松青,「化學電源:電池原理及製造技術」,中南大學出版,2009。
    16. B. W. Jensen, M. Forsyth, D. R. MacFarlane, “High Rates of Oxygen Reduction over a Vapor Phase Polymerized PEDOT Electrode”, Science, 321(5889), 671-674, 2008.
    17. C. Chang, “Zinc-Air Batteries”, Technol. Rev, 86-87, 2001.
    18. D. Linden, “Handbook of Batteries”, McGraw-Hill, 2nd ed., 1994.
    19. J. S. Spendelow, A. Wieckowshi, “Electrocatalysis of Oxygen Reduction and Small Alcohol Oxidation in Alkaline Media”, Phys. Chem. Chem. Phys., 9(21), 2654, 2007.
    20. P. A. Christensen, A. Hamnett, D. Linares-Moya, “Oxygen Reduction and Fuel Oxidation in Alkaline Solution”, Phys. Chem. Chem. Phys., 13(12), 5206, 2011.
    21. W. Vielstich, A. Lamm, H. A. Gasteiger, “Handbook of Fuel Cells– Fundamentals, Technology and Applications”, Wiley, Chichester, 2003.
    22. L. Jorisen, “Bifunctional Oxygen/Air Electrode”, J. Power Sources, 155(1), 23-32, 2006.
    23. F. Cheng, J. Chen, “Metal-Air Batteries: from Oxygen Reduction Electrochemistry to Cathode Catalysts”, Chem. Soc. Rev., 41(6), 2172-2192, 2012.
    24. Md. Arafat Rahman, Xiaojian Wang, Cuie Wen, “High Energy Density Metal-Air Batteries: A Review”, Journal, 160(10), 1759-1771, 2013.
    25. P. Sapkota, H. Kim, “Zinc-Air Fuel Cell, a Potential Candidate for Alternative Energy”, J. Ind. Eng. Chem., 15(4), 445-450, 2009.
    26. J. S. Lee, S. T. Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee, J. Cho, “Metal-Air Batteries with High Energy Density: Li–Air versus Zn–Air”, Adv. Energy Mater., 1(1), 34, 2011.
    27. S. Müller, F. Holzer, O. Haas, “Optimized Zinc Electrode for rechargeable Zinc-air Battery”, J. Appl. Electrochem., 28(9), 895-898, 1998.
    28. F. R. Mclarnon, E. J. Cairns, “The Secondary Alkaline Zinc Electrode”, J. Electrochem. Soc., 138(2), 645-664, 1991.
    29. T. P. Dirkse, “The Behavior of the Zinc Electrode in Alkaline Solutions”, J. Electrochem. Soc., 128(7), 1412-1415, 1981.
    30. W. G. Sunu, D. N. Bennion, “Transient and Failure Analysis of the Porous Zinc Electrode I. Theoretical”, J. Electrochem. Soc., 127(9), 2007-2016, 1980.
    31. R. E. Durkot, L. Lin and P. B. Harris, “Zinc Electrode Particle Form”, US Pat., 6, 284, 410, Sep. 2001.
    32. H. Ma, C. S. Li, Y. Su, J. Chen, J. Mater, “Studies on the Vapour-Transport Synthesis and Electrochemical Properties of Zinc Micro-, Meso- and Nanoscale Structures” J. Mater. Chem., 17(7), 684-691, 2007.
    33. J.-F. Drillet, M. Adam, S. Barg, A. Herter, D. Koch, V. M. Schmidt and M. Wilhelm, “Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack”, ECS Trans., 7(10), 6549-6557, 2014.
    34. S. J. Banik and R. Akolkar, “Suppressing Dendrite Growth during Zinc Electrodeposition by PEG-200 Additive”, J. Electrochem. Soc., 160(11), 519-523, 2013.
    35. S. M. Lee, Y. J. Kim, S. W. Eom, N. S. Choi, K. W. Kim, S. B. Cho, “Improvement in Self-Discharge of Zn Anode by Applying Surface Modification for Zn-Air Batteries with High Energy Density”, J. Power Sources, 227, 177-184, 2013.
    36. D. P. Bhatt and R. Udhayan, “Electrochemical Studies on a Zinc-Lead-Cadmium Alloy in Aqueous Ammonium Chloride Solution”, J. Power Sources, 47(1-2), 177-184, 1994.
    37. A. R. S. Kannan, S. Muralidharan, K. B. Sarangapani, V. Balaramachandran and V. Kapali, “Corrosion and Anodic Behavior of Zinc and Its Ternary Alloys in Alkline Battery Electrolyte”, J. Power Sources, 57(1-2), 93-98, 1995.
    38. Y. D. Cho, G. T. K. Fey, “Surface Treatment of Zinc Anodes to Improve Discharge Capacity and Suppress Hydrogen Gas Evolution”, J. Power Sources, 184(2), 610, 2008.
    39. Y. Sato, M. Takahashi, H. Asakura, T. Yoshida, K. Tada, K. Kobayakawa, N. Chiba , K. Yoshida, “Gas Evolution Behavior of Zn Alloy Powder in KOH Solution”, J. Power Sources, 38(3), 317-325, 1992.
    40. J.-Y. Huot, “The Effects of Silicate Ion on the Corrosion of Zinc Powder in Alkaline Solution”, J. Appl. Electrochem., 22(5), 443-447, 1992.
    41. J. McBreen and E. Gannon, “Bismuth Oxide as an Additive in Pasted Zinc Electrodes”, J. Power Sources, 15(2-3), 169-177, 1985.
    42. J. McBreen and E. Gannon, “The Effect of Additives on Current Distribution in Pasted Zinc Electrodes”, J. Electrochem. Soc., 130(10), 1980-1982, 1983.
    43. P. Sapkota, H. Kim, “An Experimental Study on the Performance of a Zinc Air Fuel Cell with Inexpensive Metal Oxide Catalysts and Porous Organic Polymer Separators”, J. Ind. Eng. Chem., 16(1), 39-44, 2010.
    44. C. Iwakura, S. Nohara, N. Furukawa, H. Inoue, “The Possible Use of Polymer Gel Electrolytes in Nickel/Metal Hydride Battery”, Solid State Ionics, 148(3-4), 487, 2002.
    45. 曹玉佳,《鋅空氣燃料電池陰極之奈米化結構研發》,國立中正大學碩士論文,2007。
    46. 辛毓真,《鑭鈣銅氧相關系列催化劑在鋅-空氣電池中還原反應之研究》,國立交通大學碩士論文,2006。
    47. C. A. Vincent, B. Scrosati, M. Lazzari, F. Bonino, “Modern Battery”, Thomso Litho Ltd, East Kilbrid, Scotland, 1984.
    48. G. Q. Zhang, X. G. Zhang, “MnO2/MCMB Electrocatalyst for All Solid-State Alkaline Zinc-Air Cells”, Electrochim. Acta, 49(6), 873-877, 2004.
    49. M. Maja, C. Orecchia, M. Strano, P. Tosco, M. Vanni, “Effect of Structure of the Electrical Performance of Gas Diffusion Electrodes for Metal Air Batteries”, Electrochim. Acta, 46(2-3), 423-432, 2000.
    50. F. Zhang, T. Saito, S. Cheng, M. A. Hickner, B. E. Logan, “Microbial Fuel Cell Cathodes With Poly(dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors”, Environ. Sci. Technol., 44(4), 1490-1495, 2010.
    51. W. H. Zhu, B. A. Poole, D. R. Cahela, B. J. Tatarchuk, “New Structure of Thin Air Cathode for Zinc-Air Batteries”, J. Appl. Electrochem., 33(1), 29-36, 2003.
    52. D. Chartouni, N. Kuriyama, T. Kiyobayashi, J. Chen, “Air–Metal Hydride Secondary Battery with Long Cycle Life”, J. Alloys Compd, 330, 766-770, 2002.
    53. 劉霖錡,《鋅空氣電池空氣極的製備與性能》,逢甲大學碩士論文,2003。
    54. Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li, Z. Chen, “Manganese Dioxide Nanotube and Nitrogen-Doped Carbon Nanotube Based Composite Bifunctional Catalyst for Rechargeable Zinc-Air Battery”, Electrochim Acta., 69, 295-300, 2012.
    55. Y. S. Ding, X. F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V. M. B. Crisostomo, S. L. Suib, M. Aindow, “Synthesis and Catalytic Activity of Cryptomelane-Type Manganese Dioxide Nanomaterials Produced by a Novel Solvent-Free Method”, Chem. Mater., 17(21), 5382-5389, 2005.
    56. Y. Y. Shao, J. Liu, Y. Wang, Y. H. Lin, “Novel Catalyst Support Material for PEM Fuel Cell: Current Status and Future Prospects”, J. Mater. Chem., 19(1), 46-59, 2009.
    57. K. Kinoshita, “Carbon: electrochemical and physicochemical properties”, Wiley-Interscience, 1998.
    58. M. Pirjamali, Y. Kiros, “Effects of carbon pretreatment for oxygen Reduction in alkaline electrolyte”, J. Power Sources, 109(2), 446-451, 2002.
    59. M. E. Lai, A. Bergel, “Electrochemical reduction of oxygen on glassy carbon: catalysis by catalase”, J. Electroanal. Chem., 494(1), 30-40, 2000.
    60. P. C. Foller, “Improved Slurry Zinc/Air Systems as Batteries for Urban Vehicle Propulsion”, J. Appl. Electrochem., 16(4), 527-543, 1986.
    61. Y. Li and H. Dai “Recent advances in zinc–air batteries”, hem. Soc. Rev., 43(15), 5257-5275, 2014.
    62. T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalkar, M. Srinivasan, “Silver Nanoparticle-Decorated Carbon Nanotubes as Bifunctional Gas-Diffusion Electrodes for Zinc–Air Batteries”, J. Power Sources, 195(13), 4350-4355, 2010.
    63. Y. Li, M. Gong, Y. Liang, J. Feng, J. E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, “Advanced Zinc-Air Batteries Based on High-Performance Hybrid Electrocatalysts”, Nat. Commun., 4, 1805, 2013.
    64. J. Yang, J. J. Xu, “Nanostructured Amorphous Manganese Oxide Cryogel as a High-Rate Lithium Intercalation Host”, Electrochem. Commun., 5(3), 230-235, 2003.
    65. Y. Yang, Q. Sun, Y. S. Li, H. Li, Z. W. Fu, “A CoOx/Carbon Double-Layer Thin Film Air Eectrode for Nonaqueous Li-Air Batteries”, J. Power Sources, 223, 312-318, 2013.
    66. F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen, “MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media”, Chem. Mater., 22(3), 898, 2010.
    67. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, “Co3O4 Nanocrystal on Graphene as a Synergistic Catalyst for Reduction Reaction”, Nat. Mater., 10, 780, 2011.
    68. M. Yuasa, M. Nishida, T. Kida, N. Yamazoe, K. Shimanoe, “Bi-Functional Oxygen Electrodes Using LaMnO3/LaNiO3 for Rechargeable Metal-Air Batteries”, J. Electrochem. Soc., 158(5), 605-610, 2011.
    69. N. A. Merino, B. P. Barbero, P. Grange, L. E. Cadus, “La1−xCaxCoO3 Perovskite-Type Oxides: Preparation, Characterisation, Stability, and Catalytic Potentiality for the Total Oxidation of Propane”, J. Catal., 231(1), 232-244, 2005.
    70. S. Pathaka, J. Kuebler, A. Payzantc, N. Orlovskaya, “Mechanical Behavior and Electrical Conductivity of La1−xCaxCoO3 (x = 0, 0.2, 0.4, 0.55) Perovskites”, J. Power Sources, 195(11), 3612-3620, 2010.
    71. G. Du, X. Liu, Y. Zong, T. S. A. Hor, A. Yucand, Z. Liu,“Co3O4 Nanoparticle-Modified MnO2 Nanotube Bifunctional Oxygen Cathode Catalysts for Rechargeable Bifunctional Oxygen Cathode Catalysts for Rechargeable Zinc–Air Batteries”, Nanoscale, 5(11), 4657-4661, 2013.
    72. H. Tanaka, M. Misono, “Advances in Designing Perovskite Catalysts”, Curr. Opin. Solid State Mater. Sci., 5(5), 381-387, 2001.
    73. Seyoung Ahn, Ketack Kim, Hyunsoo Kim, Sangyong Nam, Seungwook Eom, “Synthesis and electrochemical performance of La0.7Sr0.3Co1−xFexO3 catalysts for zinc air secondary batteries”, IOP. Science, 2010.
    74. X. Z. Yuan, H. Wang, “Electrocatalytic Activity of Non-Stoichiometric Perovskites toward Oxygen Reduction Reaction in Alkaline Electrolytes”, ECS Trans, 35(33), 11-20, 2011.
    75. Kelsey A. Stoerzinger, Weiming Lü, Changjian Li, Ariando, T. Venkatesan, Yang Shao-Horn, “Highly Active Epitaxial La(1−x)SrxMnO3 Surfaces for the Oxygen Reduction Reaction: Role of Charge Transfer,” J. Phys. Chem. Lett., 6(8) , 1435-1440, 2015.
    76. Lima, F. H. B, Calegaro, M. L, Ticianelli, E. A., “Investigations of the Catalytic Properties of Manganese Oxides for the Oxygen Reduction Reaction in Alkaline Media”, J. Electroanal. Chem., 590(2), 152-160, 2006.
    77. J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, S. H. Yang, “Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal–Air Batteries”, Nat. Chem., 3(7), 546, 2011.
    78. J. E. Post, “Maganese Oxide Minerals: Crystal Structure and Economic and Environmental Significance”, Proc. Natl. Acad. Sci., 96(7), 3447-3454, 1999.
    79. J. P. Bernet, “Electrochemical Behaviour of Metallic Oxides”, J. Power Sources, 4(3), 183-190, 1979.
    80. L. Mao, T. Sotomura, K. Nakatsu, K. Nobuharu, D. Zhang, T. Ohsaka, “Electrochemical Characterization of Catalytic Activities of Manganese to Oxygen Reduction in Alkaline Aqueous Solution”, J. Electrochem. Soc., 149(4), 504-507, 2002.
    81. M.Toupin, T.Brousse, D.Be´langer, “Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor”, Chem. Mater., 16(16), 3184-3190, 2004.
    82. S. Devaraj, N. Munichandraiah, “Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties”, J. Phys. Chem. C, 112(11), 4406-4417, 2008.
    83. 李柏潔,《奈米結構之Au/MnO2複合陰極觸媒材料對於高效能金屬空氣電池之研究》,國立中央大學碩士論文,2013。
    84. N. Wang, X. Cao, G. Lin, Y. Shihe, “λ-MnO2 Nanodisks and Their Magnetic Properties”, Nanotechnology, 18(47), 475605, 2007.
    85. X. Wang, Y. Li, “Selected-Control Hydrothermal Synthesis of α-and β-MnO2 Single Crystal Nanowires”, J. Am. Chem. Soc., 124(12), 2880-2881, 2002.
    86. Y. Yang, L. Xiao, Y. Zhao, F. Wang, “Hydrothermal Synthesis and Electrochemical Characterization α-MnO2 Nanorods as Cathode Material for Lithium Batteries”, Int. J. Electrochem. Sc., 3(1), 67-74, 2008.
    87. M. Lua, S. Kharkwala, H. Y. Ng, S. Y. Li, “Carbon Nanotube Supported MnO2 Catalysts for Oxygen Reduction Reaction and Their Applications in Microbial Fuel Cells”, Biosens. Bioelectron, 26(12), 4728-4732, 2011.
    88. S. B. Ma, K. W. Nam, W. S. Yoon, X. Q. Yang, Y. Ahn, K. B. Kim, “Electrochemical Properties of Manganese Oxide Coated onto Carbon Nanotubes for Energy Storage Applications”, J. Power Sources, 178(1), 483-489, 2008.
    89. A. Zolfagharia, F. Ataherian, M. Ghaemi, A. Gholami, “Capacitive Behavior of Nanostructured MnO2 prepared by Sonochemistry Method”, Electrochim. Acta, 52(8), 2806-2814, 2007.
    90. H. Adelkhania, M. Ghaemi, “Characterization of Manganese Dioxide Electrodeposited by Pulse and Direct Current for Electrochemical Capacitor”, J. Alloys Compd, 493(1-2), 175-178, 2010.
    91. S. Liang, F. Teng, G. Bulgan, R. Zong, Y. Zhu, “Effect of Phase Structure of MnO2 Nanorod Catalyst on the Activity for CO Oxidation”, J. Phys. Chem. C, 112(14), 5307-5315, 2008.
    92. S. Chen, J. Zhu, Q. Han, Z. Zheng, Y. Yang, X. Wang, “Shape-Controlled Synthesis of One-Dimensional MnO2 via a Facile Quick-Precipitation Procedure and Its Electrochemical Properties” , Cryst. Growth Des., 9(10), 4356-4361, 2009.
    93. J. Luo, H. T. Zhu, H. M. Fan, J. K. Liang, H. L. Shi, G. H. Rao, J. B. Li, Z. M. Du, Z. X. Shen, “Synthesis of Single-Crystal Tetragonal MnO2 Nanotubes”, J. Phys. Chem. C, 112(33), 12594-12598, 2008.
    94. W. Li, Q. Liu, Y. Sun, J. Sun, R. Zou, G. Li, X. Hu, G. Song, G. Ma, J. Yang, Z. Chen J. Hu, “MnO2 Ultralong Nanowires with Better Electrical Conductivity and Enhanced Supercapacitor Performances” , J. Mater. Chem., 22(30), 14864-14867, 2012.
    95. M. Xu, L. Kong, W. Zhou, H. Li, “Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Hollow Spheres and Hollow Urchins”, J. Phys. Chem. C, 111(51), 19141-19147, 2007.
    96. I. Roche, E. Chaînet, M. Chatenet, J. Vondrák, “Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium: Physical Characterizations and ORR Mechanism”, J. Phys. Chem. C, 111(3), 1434-1443, 2007.
    97. Y. L. Cao, H. X. Yang, X. P. Ai, L. F. Xiao, “The Mechanism of Oxygen Reduction on MnO2-Catalyzed Air Cathode in Alkaline Solution”, J. Appl. Electrochem., 557, 127-134, 2003.
    98. J. P. Brebet, “Electrochemical Behaviour of Metallic Oxides”, J. Power Sources, 4(3), 183-190, 1979.
    99. Po-Chieh Li, Chi-Chang Hu, Hiroyuki Noda, Hiroki Habazaki, “Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries: Effects of the crystalline structure of manganese oxides”, J. Power Sources, 298, 102-113, 2015.
    100. 呂明修,《α 相二氧化錳觸媒於高充放電效率鋅空氣電池陰極之研究》,國立臺灣科技大學碩士論文,2014。
    101. 莊承澔,《以靜電紡絲法製備鑭鍶錳氧化物/聚丙烯腈系碳纖用於鋅空氣電池陰極之研究》,國立臺灣科技大學碩士論文,2016。
    102. K. T. Jacob, A. Kumar, G. Rajitha and Y. Waseda, “Thermodynamic Data for Mn3O4, Mn2O3 and MnO2”, High Temp. Mater. Proc., 30(4-5), 459–472, 2011.
    103. 鍾宇凡,《PEDOT:PSS導電高分子 / α 相二氧化錳之複合觸媒用於鋅空氣電池陰極之研究》,國立臺灣科技大學碩士論文,2017。
    104. I. D. Raistrick, D. R. Franceschetti, J. R. Macdonald, “The Electrical Analogs of Physical and Chemical Processes”, Impedance Spectroscopy, John Wiley & Sons, New York, 27-132, 2003.

    無法下載圖示 全文公開日期 2023/12/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE