簡易檢索 / 詳目顯示

研究生: 張耿豪
Chang,Keng - Hao
論文名稱: 表面修飾球狀LiNi1/3Co1/3Mn1/3O2鋰離子陰極材料之研究
Studies on Surface Modified Spherical LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Lithium Ion Batteries
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 杜景順
Do, Jing-Shan
周澤川
Chou,Tse Chuan
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 124
中文關鍵詞: LiNi1/3Co1/3Mn1/3O2表面修飾陰極材料鋰離子電池
外文關鍵詞: Li-ion battery; LiNi1/3Co1/3Mn1/3O2;coating;sphe
相關次數: 點閱:257下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本研究之目的在於開發具有高充放速率能力和高循環壽命之先
    進式鋰離子電池層狀陰極材料。為了完成這個目標,我們採用新穎合
    成方式製造高密度球狀粒子,更進一步將以金屬氧化物修飾其表面,
    來獲得高可逆電容量、高充放速率能力、高循環壽命的陰極材料。
    由於LiNi1/3Co1/3Mn1/3O2具有高電壓及高可逆電容量,其被視為最
    具潛力的鋰離子二次電池的陰極材料,我們結合共沈澱法與噴霧乾燥
    法合成球狀LiNi1/3Co1/3Mn1/3O2,並藉由ZrO2、TiO2、 Al2O3和AlPO4修
    飾合成LiNi1/3Co1/3Mn1/3O2的表面。為了鑑定材料的特性,應用了粉末
    繞射儀、感應耦合電漿原子放射光譜儀、掃瞄式電子顯微鏡、穿透式
    電子顯微鏡,獲得修飾前後的LiNi1/3Co1/3Mn1/3O2的相圖、元素劑量、
    粒子尺寸、表面型態、及表面修飾化合物的物性。此外以熱示差掃瞄
    卡計及化學分析電子儀評估其熱穩定性及過渡金屬的氧化價數。
    由粉末繞射圖譜顯示,藉由ZrO2、TiO2、Al2O3和AlPO4修飾前後
    的LiNi1/3Co1/3Mn1/3O2均為層狀材料,掃瞄式電子顯微鏡微影像顯示,
    修飾前後的陰極材料有部分奈米孔洞,而穿透式電子顯微鏡的影像發
    現修飾層均勻分佈在陰極材料表面,再由化學分析電子儀判定鎳、
    鈷、錳的氧化價數為二價、三價、四價。
    為了評估修飾前後的LiNi1/3Co1/3Mn1/3O2之充放電速率能力,於室
    溫下在3.0 ~ 4.5 V的範圍內,以不同的充放電速率(0.1 ~ 1.0 C) 將修飾
    前後的LiNi1/3Co1/3Mn1/3O2 做測試, 相較所有修飾前後的
    LiNi1/3Co1/3Mn1/3O2,其中LiNi1/3Co1/3Mn1/3O2@ZrO2有最佳的可逆電容
    量、最高的放電電壓平台、最優秀的充放電速率能力與循環壽命的電
    化學表現,經由極化測試分析獲得證據,得知改善表面性質後,
    LiNi1/3Co1/3Mn1/3O2@ZrO2其極化情形最少,因此可獲得較佳之電化學
    特性。我們將不同表面修飾材料的極片,充電至4.5 V之電壓後,作
    熱穩定分析,由熱示差掃瞄卡計的分析,發現不同金屬氧化物修飾後
    的極片,相較於未修飾材料的極片和商業化的LiCoO2,極片釋放較低
    的能量,顯示修飾後材料的極片所組成的電池,有較高的安全性。
    根據實驗結果,顯示合成之LiNi1/3Co1/3Mn1/3O2@ZrO2材料,展現
    最佳的可逆電容量、充放電速率能力及循環壽命的電化學特性。具有
    可當作新一代能量來源的的鋰電子電池之潛力。


    ABSTRACT

    The purpose of this study is to develop high rate capability and high
    cyclability of layered cathode material for an advanced lithium-ion
    batteries (LiBs). In order to achieve the goal, we have employed a novel
    synthesis process that can produce high density spherical particles and
    their surface was modified further by coating with appropriate metal
    oxides to obtain the cathode materials with high reversible capacity, high
    rate capability and better cycleability.
    The LiNi1/3Co1/3Mn1/3O2 electrode is the most promising cathode for
    rechargeable lithium batteries owing to its high reversible capacity at
    higher potential. We have prepared LiNi1/3Co1/3Mn1/3O2 material by
    co-precipitation and spray drying process and the resulted electrode
    powder was modified by coating with ZrO2, TiO2, Al2O3 and AlPO4 on its
    surface. The phase purity, elemental analysis, particles size and surface
    morphology and the nature of coating on the electrode surface of the bare
    and modified electrodes were determined, respectively, by employing the
    X-ray diffraction (XRD), inductively coupled plasma - Atomic emission
    spectrometer (ICP-AES), Scanning electron microscopy (SEM) and
    Transmission Electron Microscopy (TEM) techniques. Further, we have
    evaluated the thermal stability of the bare and the modified electrodes by
    means of Differential Scanning Calorimetry (DSC) and also the existence
    of chemical states of transition metals (Ni, Co and Mn) were determined
    by Electron Spectroscopy for Chemical Analysis (ESCA).
    The XRD pattern analysis revealed that the LiNi1/3Co1/3Mn1/3O2 of both
    bare and modified by coating with ZrO2, TiO2, Al2O3 and AlPO4 electrode
    materials were found to be single phase and layer structure. The SEM
    micrographs of the bare and the modified electrode powder showed
    partial nanopore and the coating layer on the surface of the modified
    electrode was found to be uniform as evidenced from TEM micrographs.
    The chemical states of Ni, Co and Mn were determined as Ni2+, Co3+ and
    Mn4+ from the ESCA analysis.
    The electrochemical cycle performance of the LiNi1/3Co1/3Mn1/3O2
    electrode was determined at various C-rates (0.1 ~ 1.0 C) in the potentials
    at 3.0 ~ 4.5 V at ambient temperature in order to evaluate the rate
    capability of the bare and the modified electrode materials. The

    LiNi1/3Co1/3Mn1/3O2 electrode modified by coating with ZrO2 was capable
    of delivering the best electrochemical characteristics of reversible
    capacity, rate capability and cyclability among the studied bare and
    modified electrodes. The improved electrochemical characteristics of the
    modified electrode by coating with ZrO2 may improve the surface
    properties of the modified electrode thereby smaller polarization as
    evidenced from polarization analysis. we have also determined the
    thermal stability of the various electrodes at the end of charged state (4.5
    V) and the DSC analysis showed that the electrode modified by coating
    with various metal oxides released lower heat compared to that of the
    pristine as well as commercial LiCoO2 cathode which indicates that the
    higher safety of the battery that can be operated at higher potentials.
    Based on various experimental results, we have concluded that the
    LiNi1/3Co1/3Mn1/3O2 electrode modified its surface by coating with ZrO2
    was found to exhibit the best electrochemical characteristics of reversible
    capacity, rate capability and cyclability. The improved electrochemical
    properties suggest that the modified electrode can be used as a potential
    cathode in the lithium-ion batteries for the next generation power source.
    Keywords: Li-ion battery; LiNi1/3Co1/3Mn1/3O2;coating;spherical
    致謝

    目錄 VI 中文摘要…………………………………………………………..….….I 英文摘要…………………………………………………………….….III 致謝...........................................................................................................V 目錄…………………………………………...……………………...…VI 圖目錄…………………………………………………………….….….X 表目錄….…………………………………………………...…….......XVI 第一章 緒論............................................................................................1 1.1 前言.......................................................................................................1 1.2 研究動機與目的..................................................................................3 第二章 文獻回顧......................................................................................4 2.1 鋰離子二次電池..................................................................................4 2.1.1 陽極.................................................................................................5 2.1.2 電解質............................................................................................6 2.1.3 陰極.................................................................................................8 2.2 LiCoO2陰極材料.................................................................................9 2.3 LiNiO2陰極材料................................................................................12 2.4 LiMn2O4陰極材料.............................................................................15 2.5 Li1Ni1/3Co1/3Mn1/3O2陰極材料..........................................................18 2.5.1 LiNi1/3Co1/3Mn1/3O2的製備方式..................................................18 2.5.1.1 高溫固態法製備 Li1Ni1/3Co1/3Mn1/3O2 ..................................18 2.5.1.2 溶膠凝膠法製備 Li1Ni1/3Co1/3Mn1/3O2 ..................................19 2.5.1.3 共沈澱法製備 Li1Ni1/3Co1/3Mn1/3O2 ......................................21 2.5.1.4 高速噴霧熱解法製備Li1Ni1/3Co1/3Mn1/3O2 ...........................22 VII 2.5.2 LiNi1/3Co1/3Mn1/3O2之熱穩定性.................................................23 2.6 陰極材料的形狀改質........................................................................26 2.6.1 球狀的LiCoO2 ..............................................................................26 2.6.2奈米線狀的LiCo0.5Mn0.5O2...........................................................26 2.6.3奈米管狀的V2O5 ............................................................................28 2.7 陰極材料的表面修飾........................................................................30 2.7.1 ZrO2表面修飾...............................................................................30 2.7.2 Al2O3表面修飾..............................................................................31 第三章 實驗方法和儀器設備................................................................36 3.1 儀器設備.............................................................................................36 3.2 實驗藥品.............................................................................................38 3.3 陰極材料合成....................................................................................40 3.3.1 LiNi1/3Co1/3Mn1/3O2之球形粉末陰極材料..................................40 3.3.2 ZrO2表面修飾LiNi1/3Co1/3Mn1/3O2之球形粉末陰極材料.........44 3.3.3 AlPO4表面修飾LiNi1/3Co1/3Mn1/3O2之球形粉末陰極材料.......46 3.3.4 Al2O3表面修飾LiNi1/3Co1/3Mn1/3O2之球形粉末陰極材料.........48 3.3.5 TiO2表面修飾LiNi1/3Co1/3Mn1/3O2之球形粉末陰極材料..........50 3.4 陰極極片製備....................................................................................52 3.5 鈕扣型電池組裝................................................................................54 3.6 電化學分析測試................................................................................56 3.6.1 鈕扣型電池充放電測試分析.......................................................56 3.6.2 交流阻抗電化學特性測試..........................................................56 VIII 3.6.3 極化阻抗電化學特性測試..........................................................56 3.7 材料鑑定與分析..............................................................................57 3.7.1 XRD 粉末繞射分析.....................................................................57 3.7.2 ICP-AES 感應偶合電漿放射光譜儀.........................................58 3.7.3 SEM 表面形態分析.....................................................................58 3.7.4 TEM 材料粒徑觀測....................................................................58 3.7.5 化學分析電子儀..........................................................................58 3.8(DSC)熱穩定性分析...........................................................................60 第四章實驗結果.....................................................................................61 4.1. XRD 晶格結構分析.........................................................................61 4.1.1 球狀與表面修飾LiNi1/3Co1/3Mn1/3O2晶格結構分析..................61 4.2 感應耦合電漿原子發射光譜材料成分分析....................................64 4.3 掃瞄式電子顯微鏡表面型態分析....................................................67 4.3.1 球狀Ni1/3Co1/3Mn1/3(OH)2與球狀(NiCoMn)O4 ..........................67 4.3.2 LiNi1/3Co1/3Mn1/3O2與表面修飾的LiNi1/3Co1/3Mn1/3O2 .............68 4.4 穿透式電子顯微鏡表面型態分析...................................................72 4.5 化學分析電子儀表面型態分析.......................................................74 4.6 鈕扣型電池充放電性能測試...........................................................83 4.6.1 球狀與表面修飾LiNi1/3Co1/3Mn1/3O2-0.1C放電特性.................84 IX 4.6.2 球狀與表面修飾LiNi1/3Co1/3Mn1/3O2-0.2C放電特性.................87 4.6.3 球狀與表面修飾LiNi1/3Co1/3Mn1/3O2-0.3C放電特性················ 90 4.6.4 球狀與表面修飾LiNi1/3Co1/3Mn1/3O2-0.5C放電特性.................93 4.6.5 球狀與表面修飾LiNi1/3Co1/3Mn1/3O2-1C放電特性....................96 4.7 交流阻抗電化學特性測試................................................................99 4.8 極化阻抗電化學特性測試............................................................. 102 4.9 熱示差掃瞄(DSC)低溫熱穩定性分析................................. 104 第五章討論............................................................................................ 106 5.1 共沈澱法結合噴霧乾燥法合成球狀LiNi1/3Co1/3Mn1/3O2陰極材料 ........................................................................................................ 106 5.2 表面修飾球狀LiNi1/3Co1/3Mn1/3O2對電容量衰退改善的影響... 114 5.2.1 電池阻抗.................................................................................... 114 5.2.2 電池極化................................................................................... 115 5.3 表面修飾球狀LiNi1/3Co1/3Mn1/3O2對熱穩定性的影響............... 117 第六章 結論.......................................................................................... 119 參考文獻................................................................................................ 122 圖目錄

    參考文獻
    [1]楊模華, 嵌入式過渡金屬氧化物在鋰電池電極材料上的應用. 工
    業材料 2000, 157, 144.
    [2]Yamaki, J., Tobishima, S., Hayashi, K., Saito, K., Nemoto, Y. and
    Arakawa, M. A consideration of the morphology of
    electrochemically deposited lithium in an organic electrolyte. J.
    Power Sources 1998, 74, (2), 219-227.
    [3]Delmas, C., Braconnier, J. J. and Haginmuller, P. A new variety of
    LiCoO2 with an unusual oxygen packing obtained by exchange
    reaction. Mater. Res. Bull. 1982, 17, 117.
    [4]Molenda, J., Stoklosa, A. and Bak, T. Modification in the electronic
    structure of cobalt bronze LixCoO2 and the resulting
    electrochemical properties. Solid State Ionics 1989, 36, 53.
    [5]Passerini, S., Scrosati, B. and Gorenstein, A. The intercalation of
    lithium in nickel oxide and its electrochemical properties. J.
    Electrochem. Soc. 1990, 137, 3297.
    [6]Dahn, J. R., Sacken, U. V. and Michal, C. A. Structure and
    electrochemistry of Li1+xNiO2 and A new Li2NiO2 phase with the
    Ni(OH)2 structure. Solid State Ionics 1990, 44, 87.
    [7]Barker, J., Pynenburg, R. and Koksbang, R. Determination of
    thermodynamic, kinetic and interfacial properties for the
    Li/LixMn2O4 system by electrochemical technique. J. power
    Sources 1994, 52, 185.
    [8]Mizushima, K., Jones, P. C., Wiseman, P. J. and Goodenough, J. B.
    LixCoO2 (0<x≦1): a new cathode material for batteries of high
    energy density. Mat. Res. Bull. 1980, 15, 783.
    [9]Gummow, R. J., Thackeray, M. M., Davdid, E. I. F. and Hull, S.
    Structure and electrochemistry of lithium cobalt oxide synthesized
    at 400 ℃. Mat. Res. Bull. 1992, 27, (327).
    [10]Rossen, E., Reimers, J. N. and Dahn, J. R. Synthesis and
    electrochemistry of Spinel LT-LiCoO2. Solid State Ionics 1993, 62,
    (53).
    [11]Dyer, L. D., Borie, B. S. and Smith, G. P. Alkali metal-nickel oxides
    123
    of the type MNiO2. J. Am. Chem. Soc. 1954, 78, 1499.
    [12]Goodenough, J. B., Wickham, D. G. and Croft, W. J. Some
    ferromagnetic properties of the system LixNi1-xO2. J. Appl. Phys.
    1958, 29, 380.
    [13]Ohzuku, T., Ueda, A. and Nagayama, M. Electrochemistry and
    structural chemistry of LiNiO2 (R3m) for 4 Volt secondary lithium
    cells. J. Electrochem. Soc. 1993, 140, 1862.
    [14]Thackeray, M. M., Johnson, P. J., Picciotto, L. A. D., Bruce, P. G.
    and Goodenough, J. B. Electrochemical extraction of lithium
    from LiMn2O4. Mat. Res. Bull. 1984, 19, 179.
    [15]Thackeray, M. M., David, E. I. F., Bruce, P. G. and Goodenough, J.
    B. Lithium insertion into manganese spinels. Mat. Res. Bull. 1983,
    18, 461.
    [16]Todorov, Y., M. Hideshima, Y. Noguchi, H. and Yoshio, M.
    Determination of theoretical capacity of metal ion-doped
    LiMn2O4 as the positive electrode in Li-ion batteries. J. Power
    Sources 1999, 77, 198.
    [17]Gummow, R. J., Kock, A. d. and Thackerat, M. M. Improved
    capacity retention in rechargeable 4 V lithium/lithium-manganese
    oxide (spinel) cells. Solid State Ionics 1994, 69, 59.
    [18]Ohzuku, T. and Makimura, Y. Layered Lithium Insertion Material of
    LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries. Chem. Lett. 2001,
    642.
    [19]Hwang, B. J., Tsai, Y. W., Carlier, D. and Ceder, G. A combined
    computational/experimental study on LiNi1/3Co1/3Mn1/3O2.
    Chem. Mater. 2003, 15, (19), 3676-3682.
    [20] Lee, M. H., Kang, Y. J., Myung, S. T.and Sun, Y. K. Synthetic
    optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation.
    Electrochim. Acta. 50 (2004) 939–948
    [21] Park, S. H., Yoon, C. S., Kang, S. G., Kim, H. S., Moon, S. I. and
    Sun, Y. K. Synthesis and structural characterization of layered
    Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray
    pyrolysis method. Electrochim. Acta. 49 (2004) 557–563
    [22] Belharouak, I., Sun, Y. K., Liu, J. and Amine,
    K.Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode forhigh power
    applications. J. Power Sources 123 (2003) 247–252
    [23] Ying, J., Jiang, C. and Wan, C. Preparation and characterization of
    high-density spherical LiCoO2 cathode material for lithium ion
    batteries. J. Power Sources 129 (2004) 264–269
    [24] Zhou, Y. and Hulin, Li. Sol Gel Template Synthesis of Highly
    Ordered LiCo0.5Mn0.5O2 Nanowire Arrays and Their Structural
    Properties. J. Solid State chem. 165, 247–253 (2002)
    [25] Wang, Y., Takahashi, K., Shang, H. and Cao, G. Synthesis and
    Electrochemical Properties of Vanadium Pentoxide Nanotube
    Arrays. J. Phys. Chem. B 2005, 109, 3085-3088
    [26] Chena, Z. and Dahn, J. R. Effect of a ZrO2 Coating on the Structure
    and Electrochemistry of LixCoO2 When Cycled to 4.5 V
    Electrochemical and Solid-state Letters, 5 (10) A213-A216 (2002)
    [27] Cho, J., Kim, Y. J. and Parkb, B. LiCoO2 Cathode Material That
    Does Not Show a Phase Transition from Hexagonal to Monoclinic
    Phase. J. Electrochem. Soc, 148 (10) A1110-A1115 (2001)
    [28] Luo, P. and Nieh, T.G. Preparing hydroxyapatite powders with
    controlled morphology. Biomaterials 17(1996)1959-1964
    [29]王志仁,高電容量鋰離子電池層狀陰極材料之研究.國立台灣科
    技大學/化學工程系碩士論文 2004.

    QR CODE