簡易檢索 / 詳目顯示

研究生: 陳景煌
JING-HUANG Chen
論文名稱: 氮化鎵發光二極體串聯電阻最低化的元件電路模型與製程改進
Device modeling and process improvement for minimizing the serial resistance of GaN LED
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 洪儒生
Lu-Sheng Hong
李志堅
Chin-Chien Lee
蘇忠傑
Jung-Chieh Su
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 116
中文關鍵詞: 氮化鎵發光二極體氧化銦錫傳輸線模型串聯電阻
外文關鍵詞: GaN, light emitting diode, indium tin oxide, tranmission line model, series resistance
相關次數: 點閱:230下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在發光二極體(Light emitting diode, LED)中,串聯電阻造成額外的能量損耗並產生熱,為降低串聯電阻值,本論文先建立LED元件電路模型,依據電流擴散路徑,分析總串聯電阻分別為何處所貢獻。本論文發現氧化銦錫(ITO)薄膜的側向電阻以及ITO與P型氮化鎵的接觸電阻加總已超過總串聯電阻的60%,故針對此兩者電阻值作改善。

首先針對不同的ITO鍍膜參數,做電性的改善與探討,包括: (1)不同的鍍膜方式,電子束蒸鍍與射頻濺鍍, (2)ITO鍍膜速率, (3)ITO材料源組成, (4)ITO鍍膜後快速退火的環境氣體、溫度、時間。在電性的量測中,傳輸線元件與霍爾量測分別用來測量特徵接觸電阻以及電阻率。

發現無氧環境能增進ITO薄膜的電性。對電子束蒸鍍ITO而言,電阻率由2.85×10-3 Ω•cm降低至4.52×10-4 Ω•cm,亦使得ITO與P型氮化鎵的特徵接觸電阻下降了一個數量級。對濺鍍ITO薄膜而言,電阻率獲得大幅地下降,由~10-2 Ω•cm降低至~2×10-4 Ω•cm,但濺鍍ITO於P型氮化鎵上仍然是蕭基接觸(schottky contact)。此外,ITO薄膜在蒸鍍速率低於1 A/s展現了較低的電阻率,使用83:17、90:10、95:5(In2O3:SnO2 wt%)三種不同銦錫比例的ITO蒸鍍源展現了相似的電性結果。

將新的ITO電性參數代入LED串聯電阻模型中,得到理論電阻值在3~4 Ω。同時用改良的製程實際製作LED元件,得到面積1×1 mm2的LED串聯電阻值成功由10.4 Ω降至4.5 Ω,與LED模型估計值相符。


In a light emitting diode(LED), series resistance causes additional loss and generates heat. To minimize series resistance, we established a device circuit model that analyzes the individual series resistance attributed to each contact and material along the current path.We found the indium tin oxide(ITO) lateral resistance and the contact resistance between ITO and p-type GaN dominated > 60 % of the total series resistance. Thus process improvement was aimed at reducing these two resistances.

We conducted a variety of experiments on ITO deposition process that include: (1)different methods of deposition--E-beam evaporation vs. RF sputtering, (2)ITO deposition rate, (3)ITO source material composition, and (4)the environmental gas, temperature and time in the rapid thermal annealing (RTA) after ITO deposition. Electrical properties such as specific contact resistance and electrical resistivity were measured by tramsmission line model (TLM) experiment and Hall measurement, respectively.

We found oxygen-free environment enhanced the performance of ITO films. For E-beam ITO, the resistivity was reduced from 2.85×10-3 Ω•cm to 4.52×10-4 Ω•cm and the specific contact resistance was lowered by an order of magnitude. And for sputtered ITO, the resistivity was largely reduced from ~10-2 Ω•cm to ~2×10-4 Ω•cm, but Schottky contact still appeared in between sputtered ITO and P-GaN. In addition, E-beam ITO films with a deposition rate of below 1.0 A/s exhibited smaller resistivity, and films using three different target material compositions: 83:17, 90:10, 95:5 (In2O3:SnO2 wt%) showed similar results.

New ITO electrical parameters were then applied into the device model leading to a prediction of 3~4 Ω total resistance. Simultaneously, improved process was used to fabricate new LED, the series resistance of 1x1 mm2 chips in size was successfully decreased from 10.4 Ω to 4.5 Ω, in agreement with the device modeling.

中文摘要 I ABSTRACT III 致謝 V 目錄 VI 圖片目錄 IX 表格目錄 XII 第一章 導論 1 1.1 高功率藍光二極體介紹 1 1.2 研究動機與目的 10 第二章 元件模型 11 2.1 發光二極體串聯電阻模型 12 2.2 矩形傳輸線模型理論 22 第三章 氧化銦錫(ITO)薄膜介紹 25 3.1 簡介 25 3.2 電性 28 3.3 光學特性 32 3.4 沉積方式 37 3.5 鍍膜製程後退火 39 第四章 元件製程與儀器介紹 42 4.1 元件製程 42 4.1.1 發光二極體元件製作 47 4.1.2 矩形傳輸線元件製作 53 4.1.3 霍爾量測元件製作 56 4.2 製程儀器介紹 58 4.2.1 電子束蒸鍍機(E-beam evaporator) 58 4.2.2 射頻濺鍍機(RF sputter) 59 4.3 量測儀器介紹 61 4.3.1 L-I與I-V量測系統 61 4.3.2 太陽光源模擬器及I-V量測系統 62 4.3.3 霍爾量測 64 第五章 實驗結果與討論 67 5.1 發光二極體串聯電阻模型分析 67 5.2 ITO薄膜製程改善 73 5.2.1 電子束蒸鍍ITO不同退火條件之影響 75 5.2.2 電子束蒸鍍ITO鍍膜速率之影響 78 5.2.3 電子束蒸鍍ITO不同銦錫比例之影響 79 5.2.4 濺鍍ITO電性改善與蒸鍍ITO電性比較 82 5.2.5 濺鍍與蒸鍍ITO穿透率與平坦度比較 84 5.2.6 濺鍍與蒸鍍ITO應用於LED結果比較 88 5.3 N型電極於不同退火溫度的電性量測結果分析 90 5.4 透明導電層(ITO)於不同退火環境的電性量測結果 94 5.5 透明導電層(ITO)於不同銦錫比例的電性量測結果 97 5.6 P型氮化鎵活化製程量測 99 5.7 氮化鎵藍光二極體電特性最佳化 100 第六章 結論與未來展望 104 參考文獻 107

[1]新世紀光電股份有限公司, http://www.gpiled.com/
[2]Bridgelux, http://www.bridgelux.com/
[3]Russell D. Dupuis, Michael R. Krames, “History, Development, and Applications of High-Brightness Visible Light-Emitting Diodes”, Journal of Lightwave Technology, 26 (9), 1154-1171 (2008)
[4]E. Fred Schubert, “Light-emitting diode”, Cambridge University Press, New York (2006)
[5]Nick Holonyak and S. F. Bevacqua, “COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS”, Appl. Phys. Lett., 1, 82 (1962)
[6]Shuji Nakamura, Shigefusa F. Chichibu, “Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes”, CRC Press, Boca Raton (2000)
[7]Martin F. Schubert, Sameer Chhajed, Jong Kyu Kim, and E. Fred Schubert, “Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes”, Applied Physics Letters, 91, 231114 (2007)
[8]Ji-Hao Cheng, YewChung Sermon Wu, Wei-Chih Liao, and Bo-Wen Lin, “Improved crystal quality and performance of GaN-based light-emitting diodes by decreasing the slanted angle of patterned sapphire”, Appl. Phys. Lett., 96, 051109 (2010)
[9]Haiyong Gao, Fawang Yan, Yang Zhang, Jinmin Li, Yiping Zeng et al., “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale”, J. Appl. Phys., 103, 014314 (2008)
[10]S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties”, Materials Science and Engineering, R71, 1–34 (2010)
[11]Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Chin-Yuen Chen et al., “Low-resistance ohmic contacts to p-type GaN”, Appl. Phys. Lett., 74, 1275 (1999)
[12]Kow-Ming Chang, Jiunn-Yi Chu, Chao-Chen Cheng, “Investigation of indium–tin-oxide ohmic contact to p-GaN and its application to high-brightness GaN-based light-emitting diodes”, Solid-State Electronics, 49, 1381–1386 (2005)
[13]C. S. Chang, S. J. Chang, Y. K. Su, Y. C. Lin, Y. P. Hsu, S. C. Shei, “InGaN/GaN light-emitting diodes with ITO p-contact layers prepared by RF sputtering”, Semicond. Sci. Technol., 18, L21–L23 (2003)
[14]Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Chin-Yuen Chen et al., “Low-resistance ohmic contacts to p-type GaN”, Appl. Phys. Lett., 74, 1275 (1999)
[15]Ja-Soon Jang, Seong-Jin Sohn, Donghwan Kim, and Tae-Yeon Seong, “Formation of low-resistance transparent Ni/Au ohmic contacts to a polarization field-induced p-InGaN/GaN superlattice”, Semicond. Sci. Technol., 21, L37–L39 (2006)
[16]Yasushi Sato, Toru Ashida, Nobuto Oka, and Yuzo Shigesato, “Carrier Density Dependence of Optical Band Gap and Work Function in Sn-Doped In2O3 Films”, Applied Physics Express, 3, 061101 (2010)
[17]Ray-Hua Horng, Dong-Sing Wuu, Yi-Chung Lien, and Wen-How Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN”, Appl. Phys. Lett., 79, 2925 (2001)
[18]Ja-Soon Jang and Tae-Yeon Seong, “Low-resistance and thermally stable indium tin oxide Ohmic contacts on strained pIn0.15Ga0.85N/pGaN layer”, J. Appl. Phys., 101, 013711 (2007)
[19]G.H.B. Thompson, “Physics of Semiconductor Laser Devices”, Wiley-Interscience, New York, 1980
[20]X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates”, J. Appl. Phys., 90, 4191 (2001)
[21]Hyunsoo Kim, Seong-Ju Park, Hyunsang Hwang, and Nae-Man Park, “Lateral current transport path, a model for GaN-based light-emitting diodes:Applications to practical device designs”, Appl. Phys. Lett., 81, 1326 (2002)
[22]Dieter K. Schroder, “Semiconductor Material and Device Characterization”, A John Wiley & Sons, INC. (2006)
[23]G. K. Reeves and H. B. Harrison, “Obtaining the specific contact resistance from transmission line model measurements”, IEEE Electron Device Letters, 3 (5), 111-113, (1982)
[24]Donald Sawdai, Dimitris Pavlidis, and Delong Cui, “Enhanced Transmission Line Model Structures for Accurate Resistance Evaluation of Small-Size Contacts and for More Reliable Fabrication”, IEEE Transactions On Electron Devices, 46 (7), 1302-1311 (1999)
[25]陳隆建, “發光二極體之原理與製程”, 全華圖書股份有限公司 (2008)
[26]K.Badeker, “Concerning the electricity conductibility and the thermoelectric energy of several heavy metalbonds”, Ann. Phys. (Leipzig), 22, 749-766 (1907)
[27]Swati Ray, Ratnabali Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering”, J. Appl. Phys., 54, 3497 (1983)
[28]Ratnabali Banerjee, Debajyoti Das, Swati Ray, A.K. Batabyal, and A.K. Barua, “Characterization of tin doped indium oxide films pr epared by electron beam evaporation”, Solar Energy Materials, 13, 11-23 (1986)
[29]楊明輝, “工業材料雜誌”, 179, 134-144 (2001)
[30]M. Quaas, C. Eggs, H. Wulff, “Structural studies of ITO thin Rlms with the Rietveld method”, Thin Solid Films, 332, 277-281 (1998)
[31]G. Frank and H. Kostlin, “Electrical Properties and Defect Model of Tin-Doped Indium Oxide Layers”, Appl. Phys. A, 27, 197-206 (1982)
[32]John C. C. Fan and John B. Goodenough, “Xray photoemission spectroscopy studies of Sn doped indium oxide films”, J. Appl. Phys., 48, 3524 (1977)
[33]Gabriela B. Gonzalez, Jerome B. Cohen, Jin-Ha Hwang, Thomas O. Mason, Jason P. Hodges et al., “Neutron diffraction study on the defect structure of indium–tin–oxide”, J. Appl. Phys., 89, 2550 (2001)
[34]R. L. Weiher, “Electrical Properties of Single Crystals of Indium Oxide”, J. Appl. Phys., 33, 2834 (1962)
[35]Yuzo Shigesato and David C. Paine, “Study of the effect of Sn doping on the electronic transport properties of thin film indium oxide”, Appl. Phys. Lett., 62, 1268 (1993)
[36]Radhouane Bel Hadj Tahar, Takayuki Ban, Yutaka Ohya, and Yasutaka Takahashi, “Optical, structural, and electrical properties of indium oxide thin films prepared by the sol-gel method”, J. Appl. Phys., 82, 865 (1997)
[37]Astrid Bingel , Kevin Fuchsel , Norbert Kaiser, Andreas Tunnermann, “Tailored TCOs”, Proc. of SPIE, 8168, 81680R (2011)
[38]Olaf Stenzel, “The Physics of Thin Film Optical Spectra: An Introduction”, Springer, Berlin Heidelberg (2010).
[39]Swati Ray, Ratnabali Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering”, J. Appl. Phys., 54, 3497 (1983)
[40]I. Hamberg and C. G. Granqvist, “Evaporated Sn doped In2O3 films: Basic optical properties and applications to energy efficient windows”, J. Appl. Phys., 60, R123 (1986)
[41]M.M. El-Nahass ,E.M. El-Menyawy, “Thickness dependence of structural and optical properties of indium tin oxide nanofiber thin films prepared by electron beam evaporation onto quartz substrates”, Materials Science and Engineering, B177, 145–150 (2012)
[42]H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi et al., “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices”, J. Appl. Phys., 86, 6451 (1999)
[43]Radhouane Bel Hadj Tahar, Takayuki Ban, Yutaka Ohya, and Yasutaka Takahashi, “Tin doped indium oxide thin films: Electrical properties”, J. Appl. Phys., 83, 2631 (1998)
[44]李正中, “薄膜光學與鍍膜技術”, 藝軒圖書 (2009)
[45]Jung-Kyung Lee, Hwa-Min Kim, Seoung-Hwan Park, Jong-Jae Kim, Byung-Roh Rhee et al., “Heat treatment effects on electrical and optical properties of ternary compound In2O3–ZnO films”, J. Appl. Phys., 92, 5761 (2002)
[46]R. X. Wang, C. D. Beling, S. Fung, A. B. Djurišić, C. C. Ling et al., “Influence of gaseous annealing environment on the properties of indium-tin-oxide thin films”, J. Appl. Phys., 97, 033504 (2005)
[47]A.S.A.C. Diniz, C.J. Kiely, “Crystallisation of indium-tin-oxide (ITO) thin films, Renewable Energy”, 29, 2037–2051 (2004)
[48]C. Guillen and J. Herrero, “Structure, optical, and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen”, Journal of applied physics, 101, 073514 (2007)
[49]G. Goncalves, E. Elangovan, P. Barquinha, L. Pereira, R. Martins, E. Fortunato, “Influence of post-annealing temperature on the properties exhibited by ITO,IZO and GZO thin films”, Thin Solid Films, 515 8562– 8566 (2007)
[50]L. Bhrdoš and M. Libra, “Effect of the oxygen absorption on properties of ITO layers”, Vacuum, 39(1), 33-36 (1989)
[51]Arjeesh Gupta, Poonam Gupta, and V. K. Srivastava, “Annealing effects in indium oxide films prepared by reactive evaporation”, Thin Solid Films, 123, 325-33l (1985)
[52]Abhishek Motayed, Ravi Bathe, Mark C. Wood, Ousmane S. Diouf, R. D. Vispute et al., “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN”, J. Appl. Phys., 93, 1087 (2003)
[53]Z.Z. Chen, Z.X. Qin, C.Y. Hu, X.D. Hu, T.J. Yu, Y.Z. Tong, X.M. Ding, G.Y. Zhang, “Ohmic contact formation of Ti/Al/Ni/Au to n-GaN by two-step annealing method”, Materials Science and Engineering, B111, 36–39 (2004)
[54]Jorg Neugebauer and Chris G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN”, Appl. Phys. Lett., 69, 503 (1996)
[55]K. Saarinen et al., “Observation of Native Ga Vacancies in GaN by Positron Annihilation”, Physical Review Letters, 79(16), 3030-3033 (1997)
[56]T. Mattila and R. M. Nieminen , “Point-defect complexes and broadband luminescence in GaN and AlN”, Physical Review B, 55(15), 9571-9576 (1997)
[57]Jonathan Aguilar, “Ohmic n-contacts to Gallium Nitride Light Emitting Diodes”, National Nanotechnology Infrastructure Network (2007)
[58]Abhishek Motayed, Ravi Bathe, Mark C. Wood, Ousmane S. Diouf, R. D. Vispute et al., “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN”, J. Appl. Phys., 93, 1087 (2003)
[59]S. J. Chang et al., “Sputtered Indium-Tin-Oxide on p-GaN, Journal of The Electrochemical Society”, 155(2), H140-H143 (2008)
[60]Yanjun Han et al., “The Effect of p-InGaN layer on ITO based ohmic contacts to p-GaN”, IEEE Poster Session 1., P2 (2007)
[61]Hidenori Ishikawa, Setsuko Kobayashi, Y. Koide, S. Yamasaki, S. Nagai et al., “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces”, J. Appl. Phys., 81, 1315 (1997)
[62]廖彥超, 有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響, 國立台灣科技大學電子工程所碩士論文 (2011)
[63]Derivation of Beer-Lambert Law, http://pharmaxchange.info/press/2012/04/ultraviolet-visible-uv-vis-spectroscopy-%E2%80%93-derivation-of-beer-lambert-law/

QR CODE