簡易檢索 / 詳目顯示

研究生: 陳信佑
Hsin-Yu Chen
論文名稱: 高效率2kW電動車磷酸鋰鐵電池充電器之研製
Study and Implementation of a High-Efficiency 2-kW LiFePO4 Battery Charger for Electric Vehicle Applications
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 王見銘
Chien-ming Wang
劉益華
Yi-hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 126
中文關鍵詞: 無橋式功率因數修正器全橋串聯諧振轉換器二階段定電流/定電壓充電
外文關鍵詞: Bridgeless PFC, FB-LLC Series Resonant Converter
相關次數: 點閱:492下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文目的在研究和設計適合電動汽車所使用的高效率磷酸鋰鐵電池充電器。電路前級採用雙開關無橋式功率因數修正器,實現了高功率因數和低輸入電流諧波,並利用無橋技術提高轉換效率。後級採用全橋串聯諧振轉換器,實現零電壓切換,降低開關元件電壓應力,提高輸出效率,並具備輸出與輸入之間的電氣隔離。最後再串接一級交錯式降壓型轉換器,用來達到低漣波輸出及兩階段定電流/定電壓的電池充電模式,實現了對磷酸鋰鐵電池組的充電規格要求。最後並對實際設計的2kW電池充電器進行量測與分析,實驗結果證實,在輸入220V的情況下,三級串接的整機,滿載效率可達92%。


This thesis presents the study and design of a LiFePO4 battery charger for electrical vehicle applications. The front stage is a bridgeless power factor correction (PFC) circuit to achieve high power factor and low input current harmonics. Due to the bridgeless topology, the conversion efficiency is improved. The post stage is full-bridge series resonant converter (FB-SRC) with zero-voltage switching (ZVS). It can reduce the voltage stresses on the power switches, raise the efficiency and achieve electrical isolation between input and output. An interleaved buck converter is used to achieve low output ripple and accomplish constant current/constant voltage battery charging scheme. Finally a 2-kW battery charger is implementd and tested. The experimental results are shown to verify the feasibility of the proposed charger system. A 92% effcieny is achieved by the studied three-stage circuit under 220V input voltage condition.

摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖索引 VIII 表索引 XIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 內容大綱 2 第二章 磷酸鋰鐵電池充電器簡介 4 2.1 磷酸鋰鐵電池充電器架構介紹 4 2.2 電池簡介 7 2.3 充電技術簡介 9 第三章 功率因數修正器架構與原理簡介 11 3.1 功率因數的定義 11 3.2 功率因數修正器的控制模式 16 3.3 功率因數修正器之架構與工作原理 17 3.3.1 前言 17 3.3.2 單開關標準式 18 3.3.3 雙開關無橋式 21 3.3.4 雙開關半橋式 24 3.3.5 四開關標準式 27 3.4 單開關標準式與雙開關無橋式之信號感測 32 3.4.1 輸入電壓感測方法 33 3.4.2 電流感測方法 34 第四章 全橋串聯諧振轉換器原理簡介 37 4.1 理想R-L-C串聯電路的頻率響應 37 4.2 全橋串聯諧振轉換器操作模式 39 4.2.1 SRC諧振模式 40 4.2.2 LLC諧振模式 41 4.2.3 SRC與LLC模式比較 43 4.3 全橋串聯諧振轉換器動作分析 45 4.3.1 全橋SRC串聯諧振轉換器動作狀態分析 45 4.3.2 全橋LLC串聯諧振轉換器動作狀態分析 51 4.4 全橋串聯諧振轉換器之功率級電路分析 57 4.4.1 Q值對轉移函數的影響 58 4.4.2 K值對轉移函數的影響 59 4.4.3 n值對轉移函數的影響 60 4.4.4 Lr與Cr的變化對增益函數的影響 61 4.5 設計模擬全橋LLC電路增益曲線 61 第五章 交錯式降壓型轉換器與返馳式轉換器原理簡介 64 5.1 降壓型轉換器架構與動作原理 64 5.2 交錯式降壓型轉換器架構與動作原理 69 5.3 返馳式轉換器電路原理 75 5.4 理想條件下連續與不連續導通狀態 78 5.4.1 理想條件下連續導通模式 78 5.4.2 理想條件下不連續導通模式 79 5.5 非理想條件下連續與不連續導通模式 79 5.5.1 非理想條件下連續導通模式 79 5.5.2 非理想條件下不連續導通模式 80 第六章 磷酸鋰鐵電池充電器之電路設計 81 6.1 雙開關無橋式功率因數修正器電路設計 81 6.1.1 電路規格 81 6.1.2 功率級元件設計 81 6.1.3 控制IC UCC28019介紹 84 6.1.4 控制級元件設計 85 6.2 全橋串聯諧振轉換器電路設計 87 6.2.1 電路規格 88 6.2.2 功率級元件設計 88 6.2.3 控制IC UCC25600介紹 91 6.2.4 控制級元件設計 93 6.3 交錯式降壓型轉換器電路設計 94 6.3.1 電路規格 94 6.3.2 功率級元件設計 94 6.4 返馳式轉換器電路設計 95 6.4.1 電路規格 95 6.4.2 功率級元件設計 96 第七章 實測波形與數據 98 7.1 雙開關無橋式功率因數修正器實測波形與數據 98 7.1.1 實測波形 98 7.1.2 實測數據 103 7.2 全橋串聯諧振轉換器實測波形與數據 107 7.2.1 實測波形 107 7.2.2 實測數據 111 7.3 交錯式降壓型轉換器實測波形與數據 113 7.3.1 實測波形 113 7.3.2 實測數據 116 7.4 整機數據 117 第八章 結論與未來展望 119 8.1 結論 119 8.2 未來展望 120 參考文獻 121

[1] Chang-Hua Lin, Chien-Ming Wang, Min-Hsuan Hung, and Ming-Hsuan Li, “Series-Resonant Battery Charger with Synchronous Rectifiers for LiFePO4 Battery Pack,” ICIEA, pp. 316 - 321, 21-23 June 2011.
[2] Yinquan Hu and Heping Liu, “Design of Management System for LiFePO4 Power Batteries Group,” ICECE, pp. 5110 - 5113, 25-27 June 2010.
[3] Pei Zhang, Changqing Du, Fuwu Yan, and Jianqiang Kang, “Research on Energy Efficiency of the Vehicle's Battery Pack,” ICEICE, pp. 5245 - 5248, 15-17 April 2011.
[4] Youn Ki Ko, Sang Soon Cho, Hoon Huh, Sang Yeob Lee, Hong Tae Park, and Il Sung Oh, “Design of HEV-Relay Using Response Surface Method to Improve Bounce Characteristics,” ISIE, pp. 169 - 174, 5-8 July 2009.
[5] Tae-Uk Jung, Sung-Ho Lee, Sung-II Kim, Sung-Jun Park, and Jung-Pyo Hong, “The Development of Hybrid Electric Compressor Motor Drive System for HEV,” VPPC, pp. 802 - 807, 9-12 Sept. 2007.
[6] Haoming Zhang and Shenping Ding, “Application of Synergic Electric Power Supply in HEV,” WCICA, pp. 4097 - 4100, 7-9 July 2010.
[7] Dae-Sung Jung, Jae-Hong Song, Un-Ho Lee, and Hyeoun-dong Lee, “Improving Design of HEV Traction Motor for High Power Density,” ICPE & ECCE, pp. 2677 - 2680, May 30 2011-June 3 2011.
[8] Xiusheng Cheng and Yinshu Wang, “A Study on The Engaging Process of Energy-Saving Clutch in ISG HEV,” MEC, pp. 1732 - 1735, 19-22 Aug. 2011.
[9] Yongchang Du, Jinwen Gao, Liangyao Yu, Jian Song, Feng Zhao, and Wenzhang Zhan, “HEV System Based on Electric Variable Transmission,” VPPC, pp. 578 - 583, 7-10 Sept. 2009.
[10] Bin Su, Junming Zhang, and Zhengyu Lu, “Single Inductor Three-Level Boost Bridgeless PFC Rectifier with Nature Voltage Clamp,” IPEC, pp. 2092 - 2097, 21-24 June 2010.
[11] Woo-Young Choi, Jung-Min Kwon, and Bong-Hwan Kwon, “An Improved Bridgeless PFC Boost-doubler Rectifier with High-Efficiency,” PESC, pp. 1309 - 1313, 15-19 June 2008.
[12] Tsorng-Juu Liang, Shih-Cheng Kang, Chun-An Cheng, Ray-Lee Lin, and Jiann-Fuh Chen, “Analysis and Design of Single-Stage Electronic Ballast with Bridgeless PFC Configuration,” IECON, Vol. 1, pp. 502 - 508, 2-6 Nov. 2003.
[13] Shi-Gong Jiang, Gui-Hua Liu, Wei Wang, and Dian-Guo Xu, “Research on Bridgeless Boost PFC with Soft-Switching,” VPPC, pp. 1461 - 1464, 7-10 Sept. 2009.
[14] Jong-Won Shin, Jong-Bok Baek, and Bo-Hyung Cho, “Bridgeless Isolated PFC Rectifier Using Bidirectional Switch and Dual Output Windings,” ECCE, pp. 2879 - 2884, 17-22 Sept. 2011.
[15] Wei Wang, Guihua Liu, and Dianguo Xu, “Bridgeless Boost PFC with Fast Dynamic Response Algorithm,” EPE, pp. 1-6, 8-10 Sept. 2009.
[16] Woo-Young Choi, Jae-Yeon Choi, and Ju-Seung Yoo, “Single-Stage Bridgeless Three-Level AC/DC Converter with Current Doubler Rectifier,” ICPE & ECCE, pp. 2704 - 2708, May 30 2011-June 3 2011.
[17] Woo-Young Choi, Wen-Song Yu, and Jih-Sheng Lai, “A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter,” APEC, pp. 42 - 46, 21-25 Feb. 2010.
[18] Koulin Wu, Qianhong Chen, Ke Jin, and Xinbo Ruan, “Integrated Magnetic for Hybrid Full-Bridge Three-Level LLC Resonant Converter,” ICEMS, pp. 1937 - 1941, 17-20 Oct. 2008.
[19] Ke Jin, and Xinbo Ruan, “Hybrid Full-Bridge Three-Level LLC Resonant Converter- A Novel DC-DC Converter Suitable for Fuel Cell Power System,” PESC, pp. 361 - 367, 16-16 June 2005.
[20] Xiucheng Huang, Jianfeng Wang, Junming Zhang, and Zhaoming Qian, “A Hybrid Driving Scheme for Full-Bridge Synchronous Rectified LLC Resonant DC/DC Converter,” APEC, pp. 579 - 584, 6-11 March 2011.
[21] Yu Chen, Xuejun Pei, Li Peng, and Yong Kang, “A High Performance Dual Output DC-DC Converter Combined the Phase Shift Full Bridge and LLC Resonant Half Bridge with the Shared Lagging Leg,” APEC, pp. 1435 - 1440, 21-25 Feb. 2010.
[22] Ray-Lee Lin, and Chiao-Wen Lin, “Design Criteria for Resonant Tank of LLC DC-DC Resonant Converter,” IECON, pp. 427 - 432, 7-10 Nov. 2010.
[23] Jee-Hoon Jung, Ho-Sung Kim, Jong-Hyun Kim, Myoung-Hyo Ryu, and Ju-Won Baek, “High Efficiency Bidirectional LLC Resonant Converter for 380V DC Power Distribution System Using Digital Control Scheme,” APEC, pp. 532 - 538, 5-9 Feb. 2012.
[24] Wei Chen, Yilei Gu, and Zhengyu Lu, “A Novel Three Level Full Bridge Resonant DC-DC Converter Suitable for High Power Wide Range Input Applications,” APEC, pp. 373 - 379, Feb. 25 2007-March 1 2007.
[25] Cheng-Tao Tsai, Chih-Lung Shen, Jyh-Chau Su, and Ying-Che Kuo, “Analysis and Implementation of An Interleaved ZVS Buck Converter with Coupled-Inductors,” ICIEA, pp. 1392 - 1397, 21-23 June 2011.
[26] Cheng-Tao Tsai, and Chih-Lung Shen, “Interleaved Soft-Switching Buck Converter with Coupled Inductors,” ICSET, pp. 877 - 882, 24-27 Nov. 2008.
[27] Zhong Chen, Miao Chen, Yingpeng Luo, and Lei Shi, “A Family of Shunt Active Filter Based on the Interleaved Buck Switch Cell,” ECCE, pp. 1102 - 1107, 17-22 Sept. 2011.
[28] Il-Oun Lee, Shin-Young Cho, and Gun-Woo Moon, “Interleaved Buck Converter Having Low Switching Losses and Improved Step-Down Conversion Ratio,” ICPE & ECCE, pp. 2136 - 2143, May 30 2011-June 3 2011.
[29] Yao-Ching Hsieh, Yu-Jen Chen, Chin-Sien Moo, and Hung-Liang Cheng, “An Interleaved Twin-Buck Converter with Zero-Voltage-Transition,” ICIT, pp. 1 - 5, 10-13 Feb. 2009.
[30] Bor-Ren Lin, Chau-Shing Wang, Jyun-Ji Chen, and Kun-Liang Shih, “Interleaved PWM Active-Clamping Buck-Type Converter,” IPEC, pp. 68 - 75, 21-24 June 2010.
[31] Ray-Lee Lin, Cheng-Ching Hsu, and Shih-Kuen Changchien, “Interleaved Four-Phase Buck-Based Current Source with Center-Tapped Energy-Recovery Scheme for Electrical Discharge Machining,” APEC, pp. 1536 - 1542, 24-28 Feb. 2008.
[32] Huang-Hua Chiu, Ming-Fa Tsai, Chung-Shi Tseng, and Shu-Yi Yen, “A Novel Interleaved and Isolated Buck Converter with High Voltage Ratio,” IPEC, pp. 2715 - 2721, 21-24 June 2010.
[33] Cheng-Tao Tsai, and Chih-Lung Shen, “Interleaved soft-switching coupled-buck converter with active-clamp circuits,” PEDS, pp. 1113 - 1118, 2-5 Nov. 2009.
[34] Texas Instruments, Inc, “8-Pin Continuous Conduction Mode PFC Controller,” Datasheet, April 2007.
[35] Texas Instruments, Inc, “8-Pin High-Performance Resonant Mode Controller,” Datasheet, September 2008.

無法下載圖示 全文公開日期 2017/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE