簡易檢索 / 詳目顯示

研究生: 劉炯岳
Jyong-Yue Liu
論文名稱: 新穎觸媒材料對乙醇蒸氣重組反應及一氧化碳氧化反應之研究
Study of novel catalysts for steam reforming of ethanol and CO oxidation reaction
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Tse-Chuan Chou
蘇威年
Wei-Nien Su
林昇佃
Shawn D. Lin
陳敬勳
C.S. Chen
吳紀聖
Chi-Sheng Wu
鄭淑芬
Soofin Cheng
劉端祺
Tuan-Chi Liu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 141
中文關鍵詞: 乙醇蒸氣重組波洛斯凱觸媒與載體之間作用力鎳金屬氧化鑭協同作用CO氧化棒狀氧化錳氧化銅氧空缺.
外文關鍵詞: reforming of ethanol, metal-support interaction, La2O3, synergetic effects, rod like MnO2, oxygen vacancies.
相關次數: 點閱:328下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乙醇可從生質發酵製得及燃料電池未來的高發展性,乙醇蒸氣重組製氫被視為最具有潛力產氫方式之一。提高乙醇蒸氣重組產氫效率並有效減少操作成本為其主要目標。故本論文研究動機為: 製得新穎高活性及高耐久性之鎳觸媒,並探討觸媒結構對於乙醇蒸氣重組反應之關係。
    CO 氧化反應可應用於工業,受到廣泛關注,例如: 重組器產氫的純化系統(乙醇蒸氣重組器製氫後,尚有微量CO,此CO易毒化燃料電池裡的Pt觸媒)以及CO 偵測器。然而,做為CO 氧化反應之高效能貴金屬觸媒 (Rh, Pd 及Pt ),因其高昂價格,限制其廣泛應用於工業上。故本實驗研究動機為發展低溫CO氧化之非貴重金屬觸媒。以下為本論文之研究方向:
    (I)以氫氣高溫還原鈣鈦礦 (LaNiO3)製得鎳奈米觸媒 (Ni/La2O3),藉由了解金屬與載體之間作用力,期能發展具有優異催化性能之新型態乙醇蒸氣重組產氫觸媒。,經由實驗證實強作用力存在及其產生原因。此一強作用力可影響反應路徑: 藉由抑制副反應產生以提高氫氣產率。從(HRTEM)觀察中發現,除了分散良好之鎳觸媒,部分鎳金屬顆粒被載體包覆。推測此一現象可能為強作用力發生原因。在中低溫反應下(395℃),與鎳觸媒擔載於二氧化矽載體 (Ni/SiO2)比較,藉由抑制CO甲烷化反應 (CO + 3H2 → CH4 + H2O) ,促進水氣移轉反應 (CO + H2O → H2 + CO2), Ni/La2O3觸媒可產生較多的氫氣(3.7 molH2 mol-1EtOH) 。
    (II)銅鎳雙金屬觸媒支撐於氧化鑭載體上由熱還原法還原鈣鈦礦 LaNixCu1-xO3。以H2-TPR証實銅鎳雙金屬觸媒在還原溫度520~550℃形成。此結構之銅鎳觸媒可有效在低溫幫助乙醇脫氫並快速打斷碳-碳鍵,生成氫氣。氧化鑭載體亦可有效增加觸媒穩定度,幫助去除積碳。在反應溫度290℃下,乙醇轉化率趨近100%,且氫氣產率(2.21 molH2 mol-1EtOH),顯示銅鎳雙金屬觸媒對乙醇蒸氣重組反應具有優異催化活性。
    (III)以中孔結構(SBA-15)做為硬模板限制金屬氧化物成長製得奈米氧化錳觸媒。 顯示成功製得高表面積 (141.4 m2/g) 之棒狀形貌奈米二氧化錳,且二氧化錳表面錳價數小於4價,指出二氧化錳樣品表面具有氧空缺,反應進行中能產生活性氧,有效促進CO與吸附氧反應。此外,in situ XRD及DFT計算結果顯示(220)二氧化錳晶面,晶格氧易與CO反應,產生CO2。以上結果, CO氧化反應在奈米棒狀二氧化錳觸媒上不僅遵循Langmuir-Hinshelwood,亦遵循Mars-van-Krevelen機制。以此二氧化錳為載體,擔載10%Cu的觸媒具有優異CO氧化活性。在反應溫度110℃,CO完全轉化為CO2。顯示CuO-MnO2 的界面具有協同效應促進CO氧化反應。


    Hydrogen production from ethanol steam reforming has recently attracted increased attention, due to the renewability of bio-ethanol and its potential use in fuel cells. The main strategy being explored to enhance efficiency and reduce the costs associated with ethanol reforming is to design a novel catalyst with improved activity and stability. The main focus of this work is to synthesize novel Ni-base catalysts and investigate the relationship between their structures and their catalytic activities when used for ethanol steam reforming.
    The CO oxidation reaction is of considerable interest, due to its relevance in many industrial applications, such as H2 purification (PROX) in reforming systems. While reforming systems still have some residual CO that may poison Pt catalysts in fuel cells and CO sensors - it is generally recognized that the noble metal catalysts (Rh, Pd, Pt) are the most effective oxidation catalysts able to eliminate CO; however, the high price of noble metals limits their application. The main target of this study is to develop highly active catalysts that do not contain noble metals for low temperature CO oxidation.
    The following research topics are addressed in this dissertation:
    (I) Understanding the metal-support interactions between Ni and La2O3 [derived from perovskite (LaNiO3)], to help us to design an improved catalyst for ethanol steam reforming. Strong metal-support interactions (SMSI) were effectively directed at maximizing the hydrogen yield by suppressing undesired reaction pathways. It was found that Ni, formed as Ni nanoparticles (NPs), was well-dispersed on the La2O3 support’s surface and was additionally partially embedded within it, thereby indicating strong interactions between the two materials. The Ni/La2O3 (derived from perovskite) nanocatalyst, when compared to a Ni/SiO2 catalyst, generated twice the hydrogen yield (3.7 molH2 mol-1EtOH) at 395℃ by inhibiting CO methanation (CO + 3H2 → CH4 + H2O) and promote the WGSR (CO + H2O → H2 + CO2).
    (II) Cu/Ni nanocatalysts were prepared by thermal reduction of a perovskite LaNixCu1-xO3. In situ XRD measurements and temperature programmed (TPR) results showed that nanosized Ni, decorated with Cu, supported on La2O3 can be produced at 520 ~550˚C. XPS measurements and TPO-TPR results corroborated the hierarchical structure. The hierarchical structure of Cu/Ni/La2O3 catalysts confers synergetic effects which greatly favor the dehydrogenation of ethanol and which break the C-C bond to produce a higher yield of hydrogen at low reaction temperature, while the La2O3 also provides required stability during the reaction. The reaction, at 290˚C, achieved nearly a 100% conversion with the hydrogen yield reaching 2.21, thus indicating that this special structural feature can achieve high activity for ethanol steam reforming at low temperatures.
    (III) The MnOx catalysts were synthesized by the mesoporous hard template (SBA-15) confined method. The experiment results showed that uniform nanosized rod-like MnO2 catalyst with a high surface area (141.4 m2/g) can be successfully prepared. Prepared samples showed the oxidation state of Mn was lower than 4+, indicating that the rod-like MnO2 surface possesses many oxygen vacancies. The O2-temperature programmed oxidation (TPO) measurement also suggests that oxygen vacancies exist on the surface of rod-like MnO2. Here, we used CO oxidation as a model reaction to demonstrate the catalytic capability of the materials formed. The reaction, at 118℃, achieved 50% CO conversion, due to rod-like MnO2 (MnOx-C3) catalyst with high surface area having many oxygen vacancies, thereby generating more activate oxygen during the reaction. Furthermore, In situ XRD measurements and DFT calculations results helped us confirm the phase transformation during the reaction. The results indicate the (220) plane of MnO2 easily removes oxygen by reacting with the adsorbed CO and then replenishes the oxygen from the gas phase oxygen. This greatly favors the adsorbed CO reacting with the activated oxygen, from the lattice, to produce high a conversion of CO at low reaction temperatures. From this observation, the CO oxidation on rod-like MnO2 catalyst not only follows the Langmuir-Hinshelwood mechanism, but also follows that of Mars-van-Krevelen. After loading 10%Cu on rod-like MnO2 surface, the rod-like manganese oxide-supported CuO catalyst exhibited superior performance. At 110℃ a 100% CO conversion was achieved, indicating that the CuO-MnO2 interface confers synergistic effects for CO oxidation.

    摘要 i Abstract iii 誌謝 vii Table of Content ix List of Tables xi List of Schemes xii List of Figures xiii List of Acronyms xvi Chapter 1. Introduction 1 1.1. Introduction to the steam reforming of ethanol 1 1.2. General aspects of steam reforming of ethanol 6 1.3. Basic catalytic principles for hydrogen production from steam reforming of ethanol 8 1.3.1. Noble metal catalysts 11 1.3.2. Non-Noble metal catalysts 12 1.3.3. Bimetallic catalysts 17 1.4. Introduction to CO oxidation reaction 18 1.4.1. General aspects of CO oxidation reaction 19 1.4.2. Catalytic activity of metal oxides in CO oxidation 19 1.5. The Strong metal and metal oxide interaction 25 1.6. Preparation methods 26 1.7. Motivation and Goal 28 Chapter 2. Catalysts Characterization and Experiments 30 2.1. Catalyst characterization 30 2.1.1. X-ray diffraction analysis 30 2.1.2. Temperature-programmed reduction and H2 uptake experiments. 32 2.1.3. High Resolution Transmission electron microscopy analysis (HRTEM) 33 2.1.4. BET analysis 33 2.1.5. X-ray Absorption Near Edge Spectroscopy (XANES) 35 2.1.6. X-ray Photoelectron Spectroscopy (XPS) 36 2.1.7. Thermo Gravimetric Analyzer (TGA) 37 2.1.8. Density functional theory (DFT) 38 2.2. Steam reforming of ethanol and CO oxidation reactions 39 2.3. Experiments 45 2.3.1. Chemicals 45 2.3.2. Gas 46 2.3.3. Catalyst preparation-the Ni nanocatalysts supported on La2O3 46 2.3.4. Catalyst preparation-the hierarchical Cu decorated Ni nanocatalysts supported on La2O3. 49 2.3.5. Catalyst preparation- Rod-like manganese oxide-supported CuO catalysts. 51 Chapter 3. Rational design of ethanol steam reforming catalyst based on analysis of Ni/La2O3 metal-support interactions 54 3.1. Motivation 54 3.2. Results and discussion 58 3.3. Summary 78 Chapter 4. Hierarchical Cu decorated Ni nanocatalysts supported on La2O3 derived from perovskites for low temperature steam reforming of ethanol 80 4.1. Motivation 80 4.2. Results and discussion 83 4.3. Summary 106 Chapter 5. Rod-like manganese oxide catalyst and rod-like manganese supported CuO catalysts for low temperature CO oxidation 108 5.1. Motivation 108 5.2. Results and discussion 110 5.3. Summary 125 Chapter 6 Conclusions 127 Chapter 7 Recommendation for future research 131 References 132

    [1] M. C. Sanchez-Sanchez, R. M. Navarro, J. L. G. Fierro, Catalysis Today 2007, 129, 336-345.
    [2] K. Ledjeff, Brennstoffzellen: Entwicklung - Technologie–Anwendung'. 1st ed., 1995.
    [3] R. Bashyam, P. Zelenay, Nature 2006, 443, 63-66.
    [4] B. C. H. Steele, A. Heinzel, Nature 2001, 414, 345-352.
    [5] A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Energy & Fuels 2005, 19, 2098-2106.
    [6] M. Galbe, G. Zacchi, Applied Microbiology and Biotechnology 2002, 59, 618-628.
    [7] M. Ni, D. Y. C. Leung, M. K. H. Leung, International Journal of Hydrogen Energy 2007, 32, 3238-3247.
    [8] D. K. Liguras, D. I. Kondarides, X. E. Verykios, Applied Catalysis B: Environmental 2003, 43, 345-354.
    [9] O. A. Gonzalez Vargas, J. A. de los Reyes Heredia, J. A. Wang, L. F. Chen, A. Montesinos Castellanos, M. E. Llanos, International Journal of Hydrogen Energy 2013, 38, 13914-13925.
    [10] W. Cai, F. Wang, E. Zhan, A. C. Van Veen, C. Mirodatos, W. Shen, Journal of Catalysis 2008, 257, 96-107.
    [11] H. Chen, H. Yu, F. Peng, H. Wang, J. Yang, M. Pan, Journal of Catalysis 2010, 269, 281-290.
    [12] F. Wang, W. Cai, Tana, H. Provendier, Y. Schuurman, C. Descorme, C. Mirodatos, W. Shen, Applied Catalysis B: Environmental 2012, 125, 546-555.
    [13] F. Haga, T. Nakajima, H. Miya, S. Mishima, Catal Lett 1997, 48, 223-227.
    [14] J. Llorca, P. R. r. de la Piscina, J.-A. Dalmon, J. Sales, N. s. Homs, Applied Catalysis B: Environmental 2003, 43, 355-369.
    [15] J. F. Da Costa-Serra, A. Chica, International Journal of Hydrogen Energy 2011, 36, 3862-3869.
    [16] M. N. Barroso, M. F. Gomez, L. A. Arrua, M. C. Abello, International Journal of Hydrogen Energy 2014, 39, 8712-8719.
    [17] A. N. Fatsikostas, D. I. Kondarides, X. E. Verykios, Catalysis Today 2002, 75, 145-155.
    [18] J. Sun, X.-P. Qiu, F. Wu, W.-T. Zhu, International Journal of Hydrogen Energy 2005, 30, 437-445.
    [19] J. W. C. Liberatori, R. U. Ribeiro, D. Zanchet, F. B. Noronha, J. M. C. Bueno, Applied Catalysis A: General 2007, 327, 197-204.
    [20] S. M. Lima, J. M. Assaf, M. A. Pena, J. L. G. Fierro, Applied Catalysis A: General 2006, 311, 94-104.
    [21] G. Valderrama, M. R. Goldwasser, C. U. D. Navarro, J. M. Tatibouet, J. Barrault, C. Batiot-Dupeyrat, F. Martinez, Catalysis Today 2005, 107-108, 785-791.
    [22] aG. S. Gallego, F. Mondragon, J. Barrault, J.-M. Tatibouet, C. Batiot-Dupeyrat, Applied Catalysis A: General 2006, 311, 164-171; bC. Batiot-Dupeyrat, G. A. S. Gallego, F. Mondragon, J. Barrault, J. M. Tatibouet, Catalysis Today 2005, 107-108, 474-480; cC. Batiot-Dupeyrat, G. Valderrama, A. Meneses, F. Martinez, J. Barrault, J. M. Tatibouet, Applied Catalysis A: General 2003, 248, 143-151.
    [23] aS. M. de Lima, A. M. da Silva, L. O. O. da Costa, J. M. Assaf, G. Jacobs, B. H. Davis, L. V. Mattos, F. B. Noronha, Applied Catalysis A: General 2010, 377, 181-190; bH. Chen, H. Yu, F. Peng, G. Yang, H. Wang, J. Yang, Y. Tang, Chemical Engineering Journal 2010, 160, 333-339; cK.-H. Lin, C.-B. Wang, S.-H. Chien, International Journal of Hydrogen Energy 2013, 38, 3226-3232.
    [24] M. Fernando, B. Graciela, J. Matı́as, L. Miguel, Appl Catal A Gen 2003, 238, 41-54.
    [25] A. J. Vizcaino, A. Carrero, J. A. Calles, International Journal of Hydrogen Energy, 32, 1450-1461.
    [26] J. A. Calles, A. Carrero, A. J. Vizcaino, Microporous and Mesoporous Materials 2009, 119, 200-207.
    [27] L.-C. Chen, S. D. Lin, Applied Catalysis B: Environmental 2011, 106, 639-649.
    [28]
    [29] S. Royer, D. Duprez, ChemCatChem 2011, 3, 24-65.
    [30] aY. Teng, H. Sakurai, A. Ueda, T. Kobayashi, International Journal of Hydrogen Energy 1999, 24, 355-358; bY. F. Han, M. J. Kahlich, M. Kinne, R. J. Behm, Applied Catalysis B: Environmental 2004, 50, 209-218.
    [31] M. Moreno, L. Bergamini, G. T. Baronetti, M. A. Laborde, F. J. Marino, International Journal of Hydrogen Energy 2010, 35, 5918-5924.
    [32] C. Zhang, L. Han, W. Liu, H. Yang, X. Zhang, X. Liu, Y. Yang, CrystEngComm 2013, 15, 5150-5155.
    [33] O. V. Krylov, Academic 1970, 283.
    [34] aY.-F. Han, F. Chen, Z. Zhong, K. Ramesh, L. Chen, E. Widjaja, The Journal of Physical Chemistry B 2006, 110, 24450-24456; bV. Iablokov, K. Frey, O. Geszti, N. Kruse, Catal Lett 2010, 134, 210-216; cS. Liang, F. Teng, G. Bulgan, R. Zong, Y. Zhu, The Journal of Physical Chemistry C 2008, 112, 5307-5315; dY.-F. Han, F. Chen, Z.-Y. Zhong, K. Ramesh, E. Widjaja, L.-W. Chen, Catalysis Communications 2006, 7, 739-744; eK. Frey, V. Iablokov, G. Safran, J. Osan, I. Sajo, R. Szukiewicz, S. Chenakin, N. Kruse, Journal of Catalysis 2012, 287, 30-36.
    [35] E. R. Stobbe, B. A. de Boer, J. W. Geus, Catalysis Today 1999, 47, 161-167.
    [36] R. K. Amankwah, C. A. Pickles, J Therm Anal Calorim 2009, 98, 849-853.
    [37] K. Ramesh, L. Chen, F. Chen, Y. Liu, Z. Wang, Y.-F. Han, Catalysis Today 2008, 131, 477-482.
    [38] R. Craciun, B. Nentwick, K. Hadjiivanov, H. Knozinger, Applied Catalysis A: General 2003, 243, 67-79.
    [39] E. D. Pierron, J. A. Rashkin, J. F. Roth, Journal of Catalysis 1967, 9, 38-44.
    [40] S. Kacimi, J. Barbier, Jr., R. Taha, D. Duprez, Catal Lett 1993, 22, 343-350.
    [41] aC. R. Jung, J. Han, S. W. Nam, T. H. Lim, S. A. Hong, H. I. Lee, Catalysis Today 2004, 93–95, 183-190; bA. Martı́nez-Arias, M. Fernandez-Garcı́a, O. Galvez, J. M. Coronado, J. A. Anderson, J. C. Conesa, J. Soria, G. Munuera, Journal of Catalysis 2000, 195, 207-216; cW. Liu, M. Flytzanistephanopoulos, Journal of Catalysis 1995, 153, 317-332; dA. Martı́nez-Arias, M. Fernandez-Garcı́a, A. B. Hungrı́a, A. Iglesias-Juez, O. Galvez, J. A. Anderson, J. C. Conesa, J. Soria, G. Munuera, Journal of Catalysis 2003, 214, 261-272; eA.-P. Jia, S.-Y. Jiang, J.-Q. Lu, M.-F. Luo, The Journal of Physical Chemistry C 2010, 114, 21605-21610.
    [42] H. Orita, S. Naito, K. Tamaru, The Journal of Physical Chemistry 1985, 89, 3066-3069.
    [43] R. Pereniguez, V. M. Gonzalez-DelaCruz, J. P. Holgado, A. Caballero, Applied Catalysis B: Environmental 2010, 93, 346-353.
    [44] E. Krijn P. de Jong, Wiley-VCH Verlag GmbH & Co, 2009, p. 401.
    [45] J. T. Richardson, Principles of Catalyst Development, Plenum Press, New York, 1989.
    [46] G. J. K. Acres, A. J. Bird, J. W. Jenkins, F. King, in Catalysis, pp. 1-30.
    [47] S. Sakka, H. Kozuka, Hanbook of sol-gel science and technology: processing, characterization, and aapplication, Vol. Volume I, Kluwer Academic Publishers, United State of America, 2005.
    [48] J. Livage, Current Opinion in Solid State and Materials Science 1997, 2, 132-138.
    [49] E. Krign P. de Jong, Wiley-VCH Verlag GmbH & Co 2009, p. 401.
    [50] J. W. Niemantsverdriet, 1995, p. 289.
    [51] S. Brunauer, P. H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers, Vol. 60, American Chemical Society, 1938.
    [52] D. C. P. Koningsberger, R., 1988, P126.
    [53] S. D. H. Jackson, J. S. J. ; , Vol. 1, Wiely-VCH verlag GmbH & Co. KGaA, 2009, p. 485.
    [54] G. Kresse, D. Joubert, Physical Review B 1999, 59, 1758-1775.
    [55] aG. Kresse, J. Hafner, Physical Review B 1993, 47, 558-561; bG. Kresse, J. Furthmuller, Physical Review B 1996, 54, 11169-11186; cG. Kresse, J. Furthmuller, Computational Materials Science 1996, 6, 15-50.
    [56] ViCI, http://www.vici.com/.
    [57] C. Wu, P. T. Williams, Environmental Science & Technology 2010, 44, 5993-5998.
    [58] D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548-552.
    [59] S.-W. Liu, J.-Y. Liu, Y.-H. Liu, Y.-H. Huang, C.-T. Yeh, C.-B. Wang, Catalysis Today 2011, 164, 246-250.
    [60] S. Li, M. Li, C. Zhang, S. Wang, X. Ma, J. Gong, International Journal of Hydrogen Energy 2012, 37, 2940-2949.
    [61] L. Liu, X. Ma, J. Li, International Journal of Energy Research 2013, n/a-n/a.
    [62] S. J. Han, Y. Bang, J. Yoo, J. G. Seo, I. K. Song, International Journal of Hydrogen Energy 2013, 38, 8285-8292.
    [63] J. L. Contreras, J. Salmones, J. A. Colin-Luna, L. Nuno, B. Quintana, I. Cordova, B. Zeifert, C. Tapia, G. A. Fuentes, International Journal of Hydrogen Energy 2014, 39, 18835-18853.
    [64] V. Nichele, M. Signoretto, F. Pinna, F. Menegazzo, I. Rossetti, G. Cruciani, G. Cerrato, A. Di Michele, Applied Catalysis B: Environmental 2014, 150–151, 12-20.
    [65] A. Carrero, J. A. Calles, A. J. Vizcaino, Applied Catalysis A: General 2007, 327, 82-94.
    [66] R. D. Kelley, D. W. Goodman, Surface Science 1982, 123, L743-L749.
    [67] J. M. G. Carballo, J. Yang, A. Holmen, S. Garcia-Rodriguez, S. Rojas, M. Ojeda, J. L. G. Fierro, Journal of Catalysis 2011, 284, 102-108.
    [68] J. Liu, ChemCatChem 2011, 3, 934-948.
    [69] aH. Wan, B. Wu, H. Xiang, Y. Li, ACS Catalysis 2012, 2, 1877-1883; bJ. Ohyama, A. Yamamoto, K. Teramura, T. Shishido, T. Tanaka, ACS Catalysis 2011, 1, 187-192.
    [70] B. H. Chen, J. M. White, The Journal of Physical Chemistry 1982, 86, 3534-3541.
    [71] S. M. Lima, J. M. Assaf, M. A. Pena, J. L. G. Fierro, Applied Catalysis A: General 2006, 311, 94-104.
    [72] aD. L. Trimm, Catalysis Today 1997, 37, 233-238; bJ. R. Rostrup-Nielsen, Journal of Catalysis 1984, 85, 31-43.
    [73] G. J. Colpas, M. J. Maroney, C. Bagyinka, M. Kumar, W. S. Willis, S. L. Suib, P. K. Mascharak, N. Baidya, Inorganic Chemistry 1991, 30, 920-928.
    [74] A. K. Agegnehu, C.-J. Pan, J. Rick, J.-F. Lee, W.-N. Su, B.-J. Hwang, Journal of Materials Chemistry 2012, 22, 13849-13854.
    [75] K.-C. Chang, B. Yildiz, D. J. Myers, J. D. Carter, H. You, ECS Transactions 2009, 16, 23-31.
    [76] J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, Y. Shao-Horn, Nat Chem 2011, 3, 546-550.
    [77] D. Chen, J. Zhong, X. Wu, Z. Wu, N. Mironova-Ulmane, A. Kuzmin, A. Marcelli, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2008, 70, 458-461.
    [78] G. Zhou, L. Barrio, S. Agnoli, S. D. Senanayake, J. Evans, A. Kubacka, M. Estrella, J. C. Hanson, A. Martinez-Arias, M. Fernandez-Garcia, J. A. Rodriguez, Angewandte Chemie International Edition 2010, 49, 9680-9684.
    [79] V. Palma, F. Castaldo, P. Ciambelli, G. Iaquaniello, Applied Catalysis B: Environmental 2014, 145, 73-84.
    [80] P. D. Vaidya, A. E. Rodrigues, Chemical Engineering Journal 2006, 117, 39-49.
    [81] aA. J. Vizcaino, A. Carrero, J. A. Calles, International Journal of Hydrogen Energy 2007, 32, 1450-1461; bP. Biswas, D. Kunzru, Catal Lett 2007, 118, 36-49; cJ. A. Calles, A. Carrero, A. J. Vizcaino, Microporous and Mesoporous Materials 2009, 119, 200-207; dX.-P. Yu, W. Chu, N. Wang, F. Ma, Catal Lett 2011, 141, 1228-1236.
    [82] J. R. Rostrup-Nielsen, J. Sehested, J. K. Norskov, in Advances in Catalysis, Vol. Volume 47, Academic Press, 2002, pp. 65-139.
    [83] J. Rass-Hansen, C. H. Christensen, J. Sehested, S. Helveg, J. R. Rostrup-Nielsen, S. Dahl, Green Chemistry 2007, 9, 1016-1021.
    [84] A. N. Fatsikostas, X. E. Verykios, Journal of Catalysis 2004, 225, 439-452.
    [85] aJ. Catherine, P. Matthieu, J. Vincent, Nanotechnology 2012, 23, 142001; bR. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, R. J. Waite, Journal of Catalysis 1972, 26, 51-62.
    [86] A. A. A. Da Silva, L. O. O. Da Costa, L. V. Mattos, F. B. Noronha, Catalysis Today 2013, 213, 25-32.
    [87] A. N. Shirsat, M. Ali, K. N. G. Kaimal, S. R. Bharadwaj, D. Das, Thermochimica Acta 2003, 399, 167-170.
    [88] aP. Ciambelli, V. Palma, A. Ruggiero, Applied Catalysis B: Environmental 2010, 96, 190-197; bN. R. Peela, A. Mubayi, D. Kunzru, Chemical Engineering Journal 2011, 167, 578-587; cM. C. Sanchez-Sanchez, R. M. Navarro Yerga, D. I. Kondarides, X. E. Verykios, J. L. G. Fierro, The Journal of Physical Chemistry A 2009, 114, 3873-3882; dA. J. Byrd, K. K. Pant, R. B. Gupta, Energy & Fuels 2007, 21, 3541-3547.
    [89] aA. F. Lucredio, J. D. A. Bellido, A. Zawadzki, E. M. Assaf, Fuel 2011, 90, 1424-1430; bH. Song, U. S. Ozkan, The Journal of Physical Chemistry A 2009, 114, 3796-3801; cH. Song, L. Zhang, U. S. Ozkan, Industrial & Engineering Chemistry Research 2010, 49, 8984-8989.
    [90] B. Lorenzut, T. Montini, L. De Rogatis, P. Canton, A. Benedetti, P. Fornasiero, Applied Catalysis B: Environmental 2011, 101, 397-408.
    [91] aL. Zhang, J. Liu, W. Li, C. Guo, J. Zhang, Journal of Natural Gas Chemistry 2009, 18, 55-65; bW. Wang, Y. Wang, Y. Liu, International Journal of Energy Research 2011, 35, 501-506; cA. Kumar, A. S. Mukasyan, E. E. Wolf, Applied Catalysis A: General 2011, 401, 20-28.
    [92] aN. Wang, X. Yu, Y. Wang, W. Chu, M. Liu, Catalysis Today; bG. R. Moradi, M. Rahmanzadeh, Catalysis Communications 2012, 26, 169-172; cK. Sutthiumporn, T. Maneerung, Y. Kathiraser, S. Kawi, International Journal of Hydrogen Energy 2012, 37, 11195-11207.
    [93] M. M. Natile, F. Poletto, A. Galenda, A. Glisenti, T. Montini, L. D. Rogatis, P. Fornasiero, Chemistry of Materials 2008, 20, 2314-2327.
    [94] V. Fierro, O. Akdim, H. Provendier, C. Mirodatos, Journal of Power Sources 2005, 145, 659-666.
    [95] A. C. Furtado, C. G. Alonso, M. P. Cantao, N. R. C. Fernandes-Machado, International Journal of Hydrogen Energy 2009, 34, 7189-7196.
    [96] G. R. Moradi, F. Khosravian, M. Rahmanzadeh, Chinese Journal of Catalysis 2012, 33, 797-801.
    [97] W. C. Conner, J. L. Falconer, Chemical Reviews 1995, 95, 759-788.
    [98] L. K. Tan, Y. Li, S. C. Ng, L. Lu, Materials Science and Technology 1999, 15, 169-179.
    [99] L. Wang, Y. Ma, Y. Wang, S. Liu, Y. Deng, Catalysis Communications 2011, 12, 1458-1462.
    [100] Q. Shi, Z. Peng, W. Chen, N. Zhang, Journal of Rare Earths 2011, 29, 861-865.
    [101] aD. Gamarra, C. Belver, M. Fernandez-Garcia, A. Martinez-Arias, Journal of the American Chemical Society 2007, 129, 12064-12065; bK. Qian, Z. Qian, Q. Hua, Z. Jiang, W. Huang, Applied Surface Science 2013, 273, 357-363.
    [102] B. Seyfi, M. Baghalha, H. Kazemian, Chemical Engineering Journal 2009, 148, 306-311.
    [103] Q. Ye, J. Zhao, F. Huo, J. Wang, S. Cheng, T. Kang, H. Dai, Catalysis Today 2011, 175, 603-609.
    [104] aM. Shen, L. Lv, J. Wang, J. Zhu, Y. Huang, Chemical Engineering Journal 2014, 255, 40-48; bB. Qi, L. Di, W. Xu, X. Zhang, Journal of Materials Chemistry A 2014, 2, 11885-11890; cH. Karadeniz, C. Karakaya, S. Tischer, O. Deutschmann, Chemical Engineering Science 2014, 117, 136-136.
    [105] aL. Zhang, T. Liu, X. Zhao, N. Qian, P. Xiong, W. Ma, W. Lu, Y. Gao, H. Luo, CrystEngComm 2014, 16, 6126-6134; bC. H. Kuo, W. Li, W. Song, Z. Luo, A. S. Poyraz, Y. Guo, A. W. K. Ma, S. L. Suib, J. He, ACS Applied Materials and Interfaces 2014, 6, 11311-11317.
    [106] aF. Bin, X. Wei, B. Li, K. S. Hui, Applied Catalysis B: Environmental 2015, 162, 282-288; bJ. C. Bauer, T. J. Toops, Y. Oyola, J. E. Parks Ii, S. Dai, S. H. Overbury, Catalysis Today 2014, 231, 15-21.
    [107] aP. Venkataswamy, K. N. Rao, D. Jampaiah, B. M. Reddy, Applied Catalysis B: Environmental 2015, 162, 122-132; bW. Zhan, X. Zhang, Y. Guo, L. Wang, G. Lu, Journal of Rare Earths 2014, 32, 146-152.
    [108] aR. Lin, M. F. Luo, Y. J. Zhong, Z. L. Yan, G. Y. Liu, W. P. Liu, Applied Catalysis A: General 2003, 255, 331-336; bA. Martinez-Arias, M. Fernandez-Garcia, O. Galvez, J. M. Coronado, J. A. Anderson, J. C. Conesa, J. Soria, G. Munuera, Journal of Catalysis 2000, 195, 207-216; cH. Wan, Z. Wang, J. Zhu, X. Li, B. Liu, F. Gao, L. Dong, Y. Chen, Applied Catalysis B: Environmental 2008, 79, 254-261.
    [109] aL.-N. Cai, Y. Guo, A.-H. Lu, P. Branton, W.-C. Li, Journal of Molecular Catalysis A: Chemical 2012, 360, 35-41; bG. Fortunato, H. R. Oswald, A. Reller, Journal of Materials Chemistry 2001, 11, 905-911; cM. Kramer, T. Schmidt, K. Stowe, W. F. Maier, Applied Catalysis A: General 2006, 302, 257-263; dA. A. Mirzaei, H. R. Shaterian, M. Kaykhaii, Applied Surface Science 2005, 239, 246-254.
    [110] Z.-Q. Zou, M. Meng, Y.-Q. Zha, The Journal of Physical Chemistry C 2009, 114, 468-477.
    [111] aB. Z. Tian, X. Y. Liu, H. F. Yang, S. H. Xie, C. Z. Yu, B. Tu, D. Y. Zhao, Advanced Materials 2003, 15, 1370-+; bW. Yue, W. Z. Zhou, Chemistry of Materials 2007, 19, 2359-2363; cM. B. Zheng, J. Cao, S. T. Liao, J. S. Liu, H. Q. Chen, Y. Zhao, W. J. Dai, G. B. Ji, J. M. Cao, J. Tao, Journal of Physical Chemistry C 2009, 113, 3887-3894.
    [112] R. Xu, X. Wang, D. Wang, K. Zhou, Y. Li, Journal of Catalysis 2006, 237, 426-430.
    [113] L.-C. Wang, Q. Liu, X.-S. Huang, Y.-M. Liu, Y. Cao, K.-N. Fan, Applied Catalysis B: Environmental 2009, 88, 204-212.
    [114] W. F. S. J.F. Moulder, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Minnesota, 1992.
    [115] M.-F. Luo, J.-M. Ma, J.-Q. Lu, Y.-P. Song, Y.-J. Wang, Journal of Catalysis 2007, 246, 52-59.

    QR CODE