簡易檢索 / 詳目顯示

研究生: Amaha Woldu Kahsay
Amaha Woldu Kahsay
論文名稱: 可還原之銅基底化合物觸媒應用於二氧化碳還原反應之研究
Copper-based Reducible Composite Electrocatalysts for Carbon Dioxide Reduction
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
王承浩
Min-Hsin Yeh
杜景順
Jing-Shan Do
王迪彥
Di-Yan Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 142
中文關鍵詞: 電化學還原CO2氧化銅氧化鉛硫化銅電解液影響SILARCuPbyOx-5 /CPCuNWsCuNW@pervo
外文關鍵詞: Electrochemical CO2 reduction, Copper oxide, Lead oxide, Copper sulfide, Electrolyte effect, SILAR, CuPbyOx-5 /CP, CuNWs, CuNW@pervo
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在當今世界急劇加重的全球變暖及氣候變遷威脅中,把問題根源產物二氧化碳(CO2)轉換成更有價值的化學物是減少其排放量的一個重要方法。在眾多把CO2還原成有用物質的方法中,電化學還原法是最有前景和可持續的。而目前在電化學還原CO2裡最具挑戰的是要克服反應中遲緩的動力學機制及活化能,這就需要有一個高活性且高選擇性電化學觸媒。目前,以Cu為基礎的觸媒是CO2轉換成碳氫化合物及醇類中最有競爭力的,已經有許多成果發表出來了。然而,這類觸媒依然面臨著低選擇性,低活性,低穩定性,高過電位等缺點。這篇文章的主要任務是用簡單的,可塑性強的合成方法來克服這些瓶頸。
    首先,我們研究了銅網電極在高濃度碳酸氫鹽電解質中於CO2還原的影響。 隨著濃度的增加,高濃度電解質顯示出了顯著增加的總還原活性。 我們使用氣相色譜分析特定產物,表明氫氣產生是高度主導的,並且沒有觀察到在特定電位下在高濃度KHCO3(2 M,3 M和4 M)電解質中,銅網可催化CO2成氣體。 這可歸因於二氧化碳不溶於濃縮水溶液。
    其次,我們用電化學沉積法合成了Cu-Pb為基礎的氧化物CuPbyOx-5/CP,在CO2還原的性能上比相同方法合成的純氧化物要好。LSV結果顯示該觸媒提升了電流密度,且有較好的選擇性。在觸媒中摻入鉛氧化物的也可以提高CO2轉化率的選擇性。
    另外,我們也第一次將由鈣鈦礦得到的鉛化合物修飾到Cu奈米線中(CuNWs@pervo),該觸媒只需在200 oC 熱處理1 hr,即可通過抑制析氫反應來提高CO2轉化率。由碘化鉛製備的鉛化合物修飾的銅奈米線在電位-1.0 V vs. RHE 時的電流密度為-15.5 mAcm-2 ,有43%的FE和59%的H2和HCOO¬-。
    最後,我們用簡易的SILAR(successive ion layer adsorption reaction) 法開發了一种環境友好,以地球富有的硫化銅修飾的銅多層結構觸媒。該觸媒在較小的過電位下就在甲酸轉化反應中表現了高選擇性。值得一提是,在電位-0.7 V時,該觸媒可得到最大法拉第效率84%的和-20 mA cm-2的電流密度。


    Conversion of earth-abundant CO2 into value-added chemicals is an important means to reduce its accumulation in the atmosphere and compact global warming and climate change related to environmental threats. Among different approaches to convert CO2 into useful reduction products, electrochemical CO2 reduction is the most promising and sustainable method to mitigate CO2 emission. One of the most critical challenges in electrochemical CO2 reduction is to overcome the activation energy and increase the sluggish kinetics of electrochemical conversion, which will demand the developments of active and selective electrocatalysts. So far copper based electrocatalysts are most appropriate candidates for CO2 conversion to hydrocarbons and alcohols. Tremendous research efforts exerted and remarkable progress has been made so far. However, poor selectivity, activity, durability and high overpotential requirement still limits their practical applications. The objectives of this dissertation work are to overcome those bottleneck challenges by developing new electrocatalyst using simple and scalable methods.

    In our first work, we have investigated the effect of highly concentrated bicarbonate electrolyte on the electrochemical performance of CO2 reduction on copper mesh electrode. High concentrated electrolytes have shown significantly increased total reduction activities as concentration increased. The specific product analysis using gas chromatography indicates hydrogen generation is the highly dominant and electrochemical conversion of CO2 into gaseous products on copper mesh in high concentrated KHCO3 (2 M, 3 M, and 4 M) at the specified potential was not observed. This could be attributed to the insolubility of carbon dioxide in concentrated aqueous solution.

    In our second work, we have synthesized Cu-Pb based oxides (CuPbyOx-5/CP) using electrochemical deposition method. The synthesized electrocatalyst has demonstrated better electrochemical CO2 reduction activity compared with pristine oxides prepared with a similar method. The LSV result demonstrates significantly improved total current density and selectivity of the optimized composites catalyst for CO2 conversion. The incorporation of lead oxides could be favoring selective CO2 conversion over hydrogen evolution reaction.

    In our third work, for the first time, perovskite derived lead composite decorated copper nanowires (CuNWs@pervo) has been synthesizing as new electrocatalyst for electrochemical CO2 reduction. The electrocatalyst prepared at 200 °C for 1 hr (CuNWs@pervo) offered remarkably enhanced CO2 reduction activities by suppressing the hydrogen evolution reaction. FE of 43% and 59% of H2 and HCOO¬- with a total current density of -15.5 mAcm-2 at -1.0 V vs.RHE were obtained at lead composite modified copper nanowire prepared from ammonium lead iodide.

    In the final work, we fabricated environment-friendly and earth-abundant, copper sulfide decorated copper heterostructure(Cu2O/CuO/CuS-20) electrocatalyst using facile and simple SILAR method. The main idea here is to maintain copper oxide by decorating with copper sulfide. The modified electrocatalyst exhibited high selectivity for formate formation at low overpotential. Remarkably, maximum faradaic efficiency of 84% and enhanced partial current density of -20 mA cm-2 were obtained at applied potential of -0.7 V

    摘要 i Abstract iii Acknowledgments v List of Figures xi List of Tables xvi List of Symbols xviii 1. Introduction 1 1.1. Anthropogenic CO2 Emissions and its Consequences 1 1.2. CO2 Emission Reduction Approaches 3 1.3. Electrochemical CO2 Reduction 4 1.3.1. Fundamentals of CO2 Electrochemistry 4 1.3.2. Thermodynamics and Chemical Stability of CO2 5 1.3.3. Challenges of Electrochemical CO2 Reduction 6 1.4. Metal Electrocatalysts for CO2 Reduction 7 1.4.1. CO2 to HCOO- (Pb, Sn, In, Bi, Hg, Cd) 9 1.4.2. CO2 to CO (Au, Ag, Zn, and Pd) 9 1.4.3. CO2 to C1-C3 (Cu) 10 1.4.4. Reaction Mechanism 12 1.5. Crucial Parameters in Electrochemical CO2 Reduction Evaluations 16 1.5.1. Onset Potential 17 1.5.2. Current Density 17 1.5.3. Faradic Efficiency (FE) 17 1.5.4. Energy Efficiency(EE) 17 1.5.5. Tafel Slope 18 2. Recent Advances and Challenges of Cu–based Reducible Composites for Electrochemical CO2 Reduction 19 2.1. Nanostructured Copper Electrocatalyst 19 2.1.1. Size-dependent CO2 Reduction Activity on Copper 19 2.1.2. CO2 Reduction Activity on Copper-based Nanoalloys 21 2.2. CO2 on Reducible Metal Nanocomposites 25 2.2.1. Oxide Derivations 26 2.2.2. Sulfides Derivations 36 2.3. Electrolyte Effects 37 2.4. Advantageous and Challenges of Cu-based Reducible Composites 39 2.5. Motivations and Objectives of the Study 40 2.5.1. Motivation 40 2.5.2. Objectives 42 3. Experimental Part 43 3.1. Chemicals and Reagents 43 3.2. Experimental Methods 43 3.2.1. Electrode and Electrolyte Preparation for Electrolyte Effect Testing 43 3.2.2. Electrochemical Synthesis of CuPb based Composite 46 3.2.2. Methyl Ammonium Lead Iodide Synthesis 47 3.2.3. Synthesis of Perovskite Derived CuNWPb -based Composite 47 3.2.4. Synthesis of CuS decorated Cu2O/CuO heterostructure 49 3.3. Material Characterization Tools 50 3.3.2. Electrochemical CO2 Reduction Performance and Product Analysis 51 4. Highly Concentrated Electrolyte effect for Electrochemical CO2 Conversion on Copper-mesh 54 4.1. The Scope of this Study 54 4.2. Material Characterization 54 4.3. Electrolyte Concentration Effect for CO2 Reduction 55 4.4. Summary 58 5. Electrochemically Synthesized Cu-Pb based Composite for Electrochemical CO2 Reduction 59 5.1. The Scope of this Study 59 5.2. Material Characterization. 60 5.3. Electrocatalytic Performance for CO2 Reduction 65 5.4. Summary 68 6. Perovskite Derived CuPb based Composite for Electrochemical CO2 Reduction 69 6.1. The Scope of this Study 69 6.2. Physical Characterization of the Catalyst 70 6.3. Electrocatalytic Performance for CO2 Reduction 75 6.4. Summary 78 7. Selective and Low Overpotential Electrochemical CO2 Reduction to Formate on CuS Decorated CuO-heterostructure 79 7.1. The Scope of this Study 79 7.2. Physical Characterization of the Catalyst 80 7.3. Electrocatalytic Performance for CO2 Reduction 84 7.4. Summary 90 8. Conclusion and Perspectives 91 8.1. Conclusions 91 8.2. Future perspectives 93 Appendix 112 Curriculum Vitae 118 List of Publications 120

    [1] J. Qiao, Y. Liu, F. Hong, J.J.C.S.R. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels, 43 (2014) 631-675.
    [2] R.J.S. Lee, The outlook for population growth, 333 (2011) 569-573.
    [3] I.E. Agency, Energy and Climate Change-World Energy Outlook Special Report, in, International Energy Agency Paris, 2015.
    [4] D.D. Zhu, J.L. Liu, S.Z.J.A.m. Qiao, Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide, 28 (2016) 3423-3452.
    [5] M. Mikkelsen, M. Jørgensen, F.C.J.E. Krebs, E. Science, The teraton challenge. A review of fixation and transformation of carbon dioxide, 3 (2010) 43-81.
    [6] N.S. Spinner, J.A. Vega, W.E.J.C.S. Mustain, Technology, Recent progress in the electrochemical conversion and utilization of CO2, 2 (2012) 19-28.
    [7] C.W. Li, J. Ciston, M.W.J.N. Kanan, Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper, 508 (2014) 504.
    [8] D.T. Whipple, P.J.J.T.J.o.P.C.L. Kenis, Prospects of CO2 utilization via direct heterogeneous electrochemical reduction, 1 (2010) 3451-3458.
    [9] U. Kang, S.K. Choi, D.J. Ham, S.M. Ji, W. Choi, D.S. Han, A. Abdel-Wahab, H.J.E. Park, E. Science, Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis, 8 (2015) 2638-2643.
    [10] S. Hernández, M.A. Farkhondehfal, F. Sastre, M. Makkee, G. Saracco, N.J.G.C. Russo, Syngas production from electrochemical reduction of CO2: current status and prospective implementation, 19 (2017) 2326-2346.
    [11] M. Ma, Selective Electrocatalytic CO2 Conversion on Metal Surfaces, (2017).
    [12] B.H. Rotstein, S.H. Liang, J.P. Holland, T.L. Collier, J.M. Hooker, A.A. Wilson, N.J.C.C. Vasdev, 11 CO2 fixation: a renaissance in PET radiochemistry, 49 (2013) 5621-5629.
    [13] G.P. Smestad, A.J.I. Steinfeld, E.C. Research, photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts, 51 (2012) 11828-11840.
    [14] J.L. White, M.F. Baruch, J.E. Pander III, Y. Hu, I.C. Fortmeyer, J.E. Park, T. Zhang, K. Liao, J. Gu, Y.J.C.r. Yan, Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes, 115 (2015) 12888-12935.
    [15] K. Li, X. An, K.H. Park, M. Khraisheh, J.J.C.T. Tang, A critical review of CO2 photoconversion: catalysts and reactors, 224 (2014) 3-12.
    [16] B. Kumar, J.P. Brian, V. Atla, S. Kumari, K.A. Bertram, R.T. White, J.M.J.C.T. Spurgeon, New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction, 270 (2016) 19-30.
    [17] D.R. Kauffman, J. Thakkar, R. Siva, C. Matranga, P.R. Ohodnicki, C. Zeng, R.J.A.a.m. Jin, interfaces, Efficient electrochemical CO2 conversion powered by renewable energy, 7 (2015) 15626-15632.
    [18] Y. Wang, J. Liu, Y. Wang, A.M. Al-Enizi, G.J.S. Zheng, Tuning of CO2 reduction selectivity on metal electrocatalysts, 13 (2017) 1701809.
    [19] E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazábal, J.J.E. Pérez-Ramírez, e. science, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes, 6 (2013) 3112-3135.
    [20] J. Schneider, H. Jia, J.T. Muckerman, E.J.C.S.R. Fujita, Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts, 41 (2012) 2036-2051.
    [21] J. Wu, X.-D.J.C.J.o.C. Zhou, Catalytic conversion of CO2 to value added fuels: Current status, challenges, and future directions, 37 (2016) 999-1015.
    [22] Y. Hori, K. Kikuchi, S.J.C.L. Suzuki, Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution, 14 (1985) 1695-1698.
    [23] B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple, P.J. Kenis, R.I.J.S. Masel, Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials, 334 (2011) 643-644.
    [24] J. Rosen, G.S. Hutchings, Q. Lu, S. Rivera, Y. Zhou, D.G. Vlachos, F.J.A.C. Jiao, Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces, 5 (2015) 4293-4299.
    [25] S.A. Chala, M.-C. Tsai, W.-N. Su, K.B. Ibrahim, A.D. Duma, M.-H. Yeh, C.-Y. Wen, C.-H. Yu, T.-S. Chan, H.J.A.C. Dai, Site Activity and Population Engineering of NiRu-Layered Double Hydroxide Nanosheets Decorated with Silver Nanoparticles for Oxygen Evolution and Reduction Reactions, 9 (2018) 117-129.
    [26] K.B. Ibrahim, W.-N. Su, M.-C. Tsai, S.A. Chala, A.W. Kahsay, M.-H. Yeh, H.-M. Chen, A.D. Duma, H. Dai, B.-J.J.N.e. Hwang, Robust and conductive Magnéli Phase Ti4O7 decorated on 3D-nanoflower NiRu-LDH as high-performance oxygen reduction electrocatalyst, 47 (2018) 309-315.
    [27] Q. Lu, J. Rosen, F.J.C. Jiao, Nanostructured metallic electrocatalysts for carbon dioxide reduction, 7 (2015) 38-47.
    [28] Y. Chen, M.W.J.J.o.t.A.C.S. Kanan, Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts, 134 (2012) 1986-1989.
    [29] B. Kumar, V. Atla, J.P. Brian, S. Kumari, T.Q. Nguyen, M. Sunkara, J.M.J.A.C.I.E. Spurgeon, Reduced SnO2 Porous Nanowires with a High Density of Grain Boundaries as Catalysts for Efficient Electrochemical CO2 into HCOOH Conversion, 56 (2017) 3645-3649.
    [30] F. Li, L. Chen, G.P. Knowles, D.R. MacFarlane, J.J.A.C.I.E. Zhang, Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity, 56 (2017) 505-509.
    [31] D.H. Won, C.H. Choi, J. Chung, M.W. Chung, E.H. Kim, S.I.J.C. Woo, Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2, 8 (2015) 3092-3098.
    [32] E.B. Nursanto, H.S. Jeon, C. Kim, M.S. Jee, J.H. Koh, Y.J. Hwang, B.K.J.C.T. Min, Gold catalyst reactivity for CO2 electro-reduction: From nano particle to layer, 260 (2016) 107-111.
    [33] S. Verma, Y. Hamasaki, C. Kim, W. Huang, S. Lu, H.-R.M. Jhong, A.A. Gewirth, T. Fujigaya, N. Nakashima, P.J.J.A.E.L. Kenis, Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer, 3 (2017) 193-198.
    [34] W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A.A. Peterson, S.J.J.o.t.A.C.S. Sun, Active and selective conversion of CO2 to CO on ultrathin Au nanowires, 136 (2014) 16132-16135.
    [35] C. Kim, H.S. Jeon, T. Eom, M.S. Jee, H. Kim, C.M. Friend, B.K. Min, Y.J.J.J.o.t.A.C.S. Hwang, Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles, 137 (2015) 13844-13850.
    [36] C. Luan, Y. Shao, Q. Lu, S. Gao, K. Huang, H. Wu, K.J.A.a.m. Yao, interfaces, High-performance carbon dioxide electrocatalytic reduction by easily fabricated large-scale silver nanowire arrays, 10 (2018) 17950-17956.
    [37] D.H. Won, H. Shin, J. Koh, J. Chung, H.S. Lee, H. Kim, S.I.J.A.C.I.E. Woo, Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst, 55 (2016) 9297-9300.
    [38] J. Rosen, G.S. Hutchings, Q. Lu, R.V. Forest, A. Moore, F.J.A.C. Jiao, Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction, 5 (2015) 4586-4591.
    [39] D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, X.J.J.o.t.A.C.S. Bao, Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles, 137 (2015) 4288-4291.
    [40] K.P. Kuhl, E.R. Cave, D.N. Abram, T.F.J.E. Jaramillo, E. Science, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces, 5 (2012) 7050-7059.
    [41] I. Takahashi, O. Koga, N. Hoshi, Y.J.J.o.E.C. Hori, Electrochemical reduction of CO2 at copper single crystal Cu (S)-[n (111)×(111)] and Cu (S)-[n (110)×(100)] electrodes, 533 (2002) 135-143.
    [42] Y. Hori, H. Wakebe, T. Tsukamoto, O.J.S.s. Koga, Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons, 335 (1995) 258-263.
    [43] K. Hara, A. Tsuneto, A. Kudo, T.J.J.o.t.E.S. Sakata, Electrochemical reduction of CO2 on a Cu electrode under high pressure factors that determine the product selectivity, 141 (1994) 2097-2103.
    [44] G. Kyriacou, A.J.J.o.a.e. Anagnostopoulos, Influence CO2 partial pressure and the supporting electrolyte cation on the product distribution in CO2 electroreduction, 23 (1993) 483-486.
    [45] N. Gupta, M. Gattrell, B.J.J.o.a.e. MacDougall, Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions, 36 (2006) 161-172.
    [46] K. Schouten, Y. Kwon, C. Van der Ham, Z. Qin, M.J.C.S. Koper, A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes, 2 (2011) 1902-1909.
    [47] M.R. Singh, Y. Kwon, Y. Lum, J.W. Ager III, A.T.J.J.o.t.A.C.S. Bell, Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu, 138 (2016) 13006-13012.
    [48] J. Resasco, L.D. Chen, E. Clark, C. Tsai, C. Hahn, T.F. Jaramillo, K. Chan, A.T.J.J.o.t.A.C.S. Bell, Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide, 139 (2017) 11277-11287.
    [49] J.H. Montoya, C. Shi, K. Chan, J.K.J.T.j.o.p.c.l. Nørskov, Theoretical insights into a CO dimerization mechanism in CO2 electroreduction, 6 (2015) 2032-2037.
    [50] X. Nie, W. Luo, M.J. Janik, A.J.J.o.c. Asthagiri, Reaction mechanisms of CO2 electrochemical reduction on Cu (1 1 1) determined with density functional theory, 312 (2014) 108-122.
    [51] R. Kortlever, J. Shen, K.J.P. Schouten, F. Calle-Vallejo, M.T.J.T.j.o.p.c.l. Koper, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide, 6 (2015) 4073-4082.
    [52] Y. Hori, R. Takahashi, Y. Yoshinami, A.J.T.J.o.P.C.B. Murata, Electrochemical reduction of CO at a copper electrode, 101 (1997) 7075-7081.
    [53] M.K. Birhanu, M.C. Tsai, A.W. Kahsay, C.T. Chen, T.S. Zeleke, K.B. Ibrahim, C.J. Huang, W.N. Su, B.J.J.A.M.I. Hwang, Copper and Copper‐Based Bimetallic Catalysts for Carbon Dioxide Electroreduction, 5 (2018) 1800919.
    [54] S. Ma, M. Sadakiyo, R. Luo, M. Heima, M. Yamauchi, P.J.J.J.o.P.S. Kenis, One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer, 301 (2016) 219-228.
    [55] S. Sen, D. Liu, G.T.R.J.A.C. Palmore, Electrochemical reduction of CO2 at copper nanofoams, 4 (2014) 3091-3095.
    [56] A. Loiudice, P. Lobaccaro, E.A. Kamali, T. Thao, B.H. Huang, J.W. Ager, R.J.A.C.I.E. Buonsanti, Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction, 55 (2016) 5789-5792.
    [57] F.S. Roberts, K.P. Kuhl, A.J.A.C.I.E. Nilsson, High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts, 54 (2015) 5179-5182.
    [58] T.T. Hoang, S. Ma, J.I. Gold, P.J. Kenis, A.A.J.A.C. Gewirth, Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis, 7 (2017) 3313-3321.
    [59] K.D. Yang, W.R. Ko, J.H. Lee, S.J. Kim, H. Lee, M.H. Lee, K.T.J.A.C.I.E. Nam, Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode, 56 (2017) 796-800.
    [60] L. Cao, D. Raciti, C. Li, K.J. Livi, P.F. Rottmann, K.J. Hemker, T. Mueller, C.J.A.C. Wang, Mechanistic insights for low-overpotential electroreduction of CO2 to CO on copper nanowires, 7 (2017) 8578-8587.
    [61] M. Ma, K. Djanashvili, W.A.J.A.C.I.E. Smith, Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays, 55 (2016) 6680-6684.
    [62] P. Huang, S. Ci, G. Wang, J. Jia, J. Xu, Z.J.J.o.C.U. Wen, High-activity Cu nanowires electrocatalysts for CO2 reduction, 20 (2017) 27-33.
    [63] M. Rahaman, A. Dutta, A. Zanetti, P.J.A.C. Broekmann, Electrochemical reduction of CO2 into multicarbon alcohols on activated Cu mesh catalysts: an identical location (IL) study, 7 (2017) 7946-7956.
    [64] R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P.J.J.o.t.A.C.S. Strasser, Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles, 136 (2014) 6978-6986.
    [65] K. Manthiram, B.J. Beberwyck, A.P.J.J.o.t.A.C.S. Alivisatos, Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst, 136 (2014) 13319-13325.
    [66] A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, S.-Z.J.C. Qiao, Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction, 4 (2018) 1809-1831.
    [67] J. Christophe, T. Doneux, C.J.E. Buess-Herman, Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper–gold alloys, 3 (2012) 139-146.
    [68] E.L. Clark, C. Hahn, T.F. Jaramillo, A.T.J.J.o.t.A.C.S. Bell, Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity, 139 (2017) 15848-15857.
    [69] S. Ma, M. Sadakiyo, M. Heima, R. Luo, R.T. Haasch, J.I. Gold, M. Yamauchi, P.J.J.J.o.t.A.C.S. Kenis, Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns, 139 (2016) 47-50.
    [70] A.S. Varela, C. Schlaup, Z.P. Jovanov, P. Malacrida, S. Horch, I.E. Stephens, I.J.T.J.o.P.C.C. Chorkendorff, CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt (111) and Pt (211), 117 (2013) 20500-20508.
    [71] S. Sarfraz, A.T. Garcia-Esparza, A. Jedidi, L. Cavallo, K.J.A.C. Takanabe, Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO, 6 (2016) 2842-2851.
    [72] G.n.O. Larrazábal, A.J. Martín, S. Mitchell, R. Hauert, J.J.A.C. Pérez-Ramírez, Enhanced reduction of CO2 to CO over Cu–In electrocatalysts: catalyst evolution is the key, 6 (2016) 6265-6274.
    [73] D. Kim, J. Resasco, Y. Yu, A.M. Asiri, P.J.N.c. Yang, Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles, 5 (2014) 4948.
    [74] Z.B. Hoffman, T.S. Gray, K.B. Moraveck, T.B. Gunnoe, G.J.A.C. Zangari, Electrochemical reduction of carbon dioxide to syngas and formate at dendritic copper–indium electrocatalysts, 7 (2017) 5381-5390.
    [75] J. Choi, M.J. Kim, S.H. Ahn, I. Choi, J.H. Jang, Y.S. Ham, J.J. Kim, S.-K.J.C.E.J. Kim, Electrochemical CO2 reduction to CO on dendritic Ag–Cu electrocatalysts prepared by electrodeposition, 299 (2016) 37-44.
    [76] M. Li, J. Wang, P. Li, K. Chang, C. Li, T. Wang, B. Jiang, H. Zhang, H. Liu, Y.J.J.o.M.C.A. Yamauchi, Mesoporous palladium–copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO2 to CO, 4 (2016) 4776-4782.
    [77] X. Guo, Y. Zhang, C. Deng, X. Li, Y. Xue, Y.-M. Yan, K.J.C.C. Sun, Composition dependent activity of Cu–Pt nanocrystals for electrochemical reduction of CO2, 51 (2015) 1345-1348.
    [78] M. Morimoto, Y. Takatsuji, R. Yamasaki, H. Hashimoto, I. Nakata, T. Sakakura, T.J.E. Haruyama, Electrodeposited Cu-Sn alloy for electrochemical CO2 reduction to CO/HCOO−, (2018) 1-10.
    [79] M. Ma, B.J. Trześniewski, J. Xie, W.A.J.A.C.I.E. Smith, Selective and Efficient Reduction of Carbon Dioxide to Carbon Monoxide on Oxide-Derived Nanostructured Silver Electrocatalysts, 55 (2016) 9748-9752.
    [80] Y. Chen, C.W. Li, M.W.J.J.o.t.A.C.S. Kanan, Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles, 134 (2012) 19969-19972.
    [81] C.H. Lee, M.W.J.A.C. Kanan, Controlling H+ vs CO2 reduction selectivity on Pb electrodes, 5 (2014) 465-469.
    [82] C.W. Li, M.W.J.J.o.t.A.C.S. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films, 134 (2012) 7231-7234.
    [83] K.W.J.J.o.t.E.S. Frese, Electrochemical reduction of CO2 at intentionally oxidized copper electrodes, 138 (1991) 3338-3344.
    [84] J. Qiao, P. Jiang, J. Liu, J.J.E.C. Zhang, Formation of Cu nanostructured electrode surfaces by an annealing–electroreduction procedure to achieve high-efficiency CO2 electroreduction, 38 (2014) 8-11.
    [85] J.-F. Xie, Y.-X. Huang, W.-W. Li, X.-N. Song, L. Xiong, H.-Q.J.E.A. Yu, Efficient electrochemical CO2 reduction on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite, 139 (2014) 137-144.
    [86] R. Kas, R. Kortlever, A. Milbrat, M.T. Koper, G. Mul, J.J.P.C.C.P. Baltrusaitis, Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons, 16 (2014) 12194-12201.
    [87] D. Ren, Y. Deng, A.D. Handoko, C.S. Chen, S. Malkhandi, B.S.J.A.C. Yeo, Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts, 5 (2015) 2814-2821.
    [88] M. Ma, K. Djanashvili, W.A.J.P.C.C.P. Smith, Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires, 17 (2015) 20861-20867.
    [89] D. Raciti, K.J. Livi, C.J.N.l. Wang, Highly dense Cu nanowires for low-overpotential CO2 reduction, 15 (2015) 6829-6835.
    [90] H. Mistry, A.S. Varela, C.S. Bonifacio, I. Zegkinoglou, I. Sinev, Y.-W. Choi, K. Kisslinger, E.A. Stach, J.C. Yang, P. Strasser, B.R. Cuenya, Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene, Nature Communications, 7 (2016) 12123.
    [91] S. Lee, D. Kim, J. Lee, Electrocatalytic Production of C3-C4 Compounds by Conversion of CO2 on a Chloride-Induced Bi-Phasic Cu2O-Cu Catalyst, Angewandte Chemie International Edition, 54 (2015) 14701-14705.
    [92] A. Loiudice, P. Lobaccaro, E.A. Kamali, T. Thao, B.H. Huang, J.W. Ager, R. Buonsanti, Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction, Angewandte Chemie International Edition, 55 (2016) 5789-5792.
    [93] R. Kas, R. Kortlever, A. Milbrat, M.T.M. Koper, G. Mul, J. Baltrusaitis, Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons, Phys. Chem. Chem. Phys., 16 (2014) 12194-12201.
    [94] D. Gao, I. Zegkinoglou, N.J. Divins, F. Scholten, I. Sinev, P. Grosse, B. Roldan Cuenya, Plasma-Activated Copper Nanocube Catalysts for Efficient Carbon Dioxide Electroreduction to Hydrocarbons and Alcohols, ACS Nano, 11 (2017) 4825-4831.
    [95] C.S. Chen, A.D. Handoko, J.H. Wan, L. Ma, D. Ren, B.S. Yeo, Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals, Catalysis Science & Technology, 5 (2015) 161-168.
    [96] A.D. Handoko, C.W. Ong, Y. Huang, Z.G. Lee, L. Lin, G.B. Panetti, B.S. Yeo, Mechanistic Insights into the Selective Electroreduction of Carbon Dioxide to Ethylene on Cu2O-Derived Copper Catalysts, The Journal of Physical Chemistry C, 120 (2016) 20058-20067.
    [97] A. Eilert, F. Cavalca, F.S. Roberts, J. Osterwalder, C. Liu, M. Favaro, E.J. Crumlin, H. Ogasawara, D. Friebel, L.G.M. Pettersson, A. Nilsson, Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction, The Journal of Physical Chemistry Letters, 8 (2017) 285-290.
    [98] T.-Y. Chang, R.-M. Liang, P.-W. Wu, J.-Y. Chen, Y.-C.J.M.L. Hsieh, Electrochemical reduction of CO2 by Cu2O-catalyzed carbon clothes, 63 (2009) 1001-1003.
    [99] S. Ohya, S. Kaneco, H. Katsumata, T. Suzuki, K.J.C.T. Ohta, Electrochemical reduction of CO2 in methanol with aid of CuO and Cu2O, 148 (2009) 329-334.
    [100] M. Le, M. Ren, Z. Zhang, P.T. Sprunger, R.L. Kurtz, J.C.J.J.o.t.E.S. Flake, Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces, 158 (2011) E45-E49.
    [101] H. Mistry, A.S. Varela, C.S. Bonifacio, I. Zegkinoglou, I. Sinev, Y.-W. Choi, K. Kisslinger, E.A. Stach, J.C. Yang, P.J.N.c. Strasser, Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene, 7 (2016) 12123.
    [102] Z. Yu, Z. Qian, Z. Jixin, Y. Qingyu, D.S. Xue, S. Wenping, Nanostructured Metal Chalcogenides for Energy Storage and Electrocatalysis, Adv. Funct. Mater., 27 (2017) 1702317.
    [103] M. Asadi, B. Kumar, A. Behranginia, B.A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R.J.N.c. Haasch, Robust carbon dioxide reduction on molybdenum disulphide edges, 5 (2014) 4470.
    [104] M. Asadi, K. Kim, C. Liu, A.V. Addepalli, P. Abbasi, P. Yasaei, P. Phillips, A. Behranginia, J.M. Cerrato, R.J.S. Haasch, Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid, 353 (2016) 467-470.
    [105] X. Zheng, P. De Luna, F.P.G. de Arquer, B. Zhang, N. Becknell, M.B. Ross, Y. Li, M.N. Banis, Y. Li, M.J.J. Liu, Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate, 1 (2017) 794-805.
    [106] F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang, D.R. MacFarlane, J.J.N.E. Zhang, Towards a better Sn: efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets, 31 (2017) 270-277.
    [107] Y. Huang, Y. Deng, A.D. Handoko, G.K. Goh, B.S.J.C. Yeo, Rational design of sulfur-doped copper catalysts for the selective electroreduction of carbon dioxide to formate, 11 (2018) 320-326.
    [108] B. Pinsent, L. Pearson, F.J.T.o.t.F.S. Roughton, The kinetics of combination of carbon dioxide with hydroxide ions, 52 (1956) 1512-1520.
    [109] Y. Hori, A. Murata, R.J.J.o.t.C.S. Takahashi, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution, 85 (1989) 2309-2326.
    [110] Y. Hori, A. Murata, R. Takahashi, S.J.J.o.t.A.C.S. Suzuki, Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure, 109 (1987) 5022-5023.
    [111] M. Dunwell, X. Yang, B.P. Setzler, J. Anibal, Y. Yan, B.J.A.C. Xu, Examination of near-electrode concentration gradients and kinetic impacts on the electrochemical reduction of CO2 using surface-enhanced infrared spectroscopy, 8 (2018) 3999-4008.
    [112] A. Wuttig, Y. Yoon, J. Ryu, Y.J.J.o.t.A.C.S. Surendranath, Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction, 139 (2017) 17109-17113.
    [113] A.D. Handoko, C.W. Ong, Y. Huang, Z.G. Lee, L. Lin, G.B. Panetti, B.S.J.T.J.o.P.C.C. Yeo, Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts, 120 (2016) 20058-20067.
    [114] E. Bertheussen, A. Verdaguer-Casadevall, D. Ravasio, J.H. Montoya, D.B. Trimarco, C. Roy, S. Meier, J. Wendland, J.K. Nørskov, I.E.J.A.C.I.E. Stephens, Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper, 55 (2016) 1450-1454.
    [115] C.S. Chen, A.D. Handoko, J.H. Wan, L. Ma, D. Ren, B.S.J.C.S. Yeo, Technology, Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals, 5 (2015) 161-168.
    [116] A.S. Varela, M. Kroschel, T. Reier, P.J.C.T. Strasser, Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH, 260 (2016) 8-13.
    [117] R. Kas, R. Kortlever, H. Yılmaz, M.T. Koper, G.J.C. Mul, Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions, 2 (2015) 354-358.
    [118] Y. Lum, B. Yue, P. Lobaccaro, A.T. Bell, J.W.J.T.J.o.P.C.C. Ager, Optimizing C–C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction, 121 (2017) 14191-14203.
    [119] E. Pérez-Gallent, G. Marcandalli, M.C. Figueiredo, F. Calle-Vallejo, M.T.J.J.o.t.A.C.S. Koper, Structure-and potential-dependent cation effects on CO reduction at copper single-crystal electrodes, 139 (2017) 16412-16419.
    [120] A.A. Dubale, A.G. Tamirat, H.-M. Chen, T.A. Berhe, C.-J. Pan, W.-N. Su, B.-J. Hwang, A highly stable CuS and CuS-Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction, Journal of Materials Chemistry A, 4 (2016) 2205-2216.
    [121] J. Resasco, Y. Lum, E. Clark, J.Z. Zeledon, A.T.J.C. Bell, Effects of anion identity and concentration on electrochemical reduction of CO2, 5 (2018) 1064-1072.
    [122] H. Zhong, K. Fujii, Y.J.J.o.T.E.S. Nakano, Effect of KHCO3 concentration on electrochemical reduction of CO2 on copper electrode, 164 (2017) F923-F927.
    [123] D. Ren, B.S.-H. Ang, B.S.J.A.C. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived Cu x Zn catalysts, 6 (2016) 8239-8247.
    [124] G.O. Larrazábal, A.J. Martín, F. Krumeich, R. Hauert, J.J.C. Pérez-Ramírez, Solvothermally-Prepared Cu2O Electrocatalysts for CO2 Reduction with Tunable Selectivity by the Introduction of p-Block Elements, 10 (2017) 1255-1265.
    [125] S. Lee, J.J.C. Lee, Electrode Build-Up of Reducible Metal Composites toward Achievable Electrochemical Conversion of Carbon Dioxide, 9 (2016) 333-344.
    [126] K. Ogura, H. Yano, T.J.C.t. Tanaka, Selective formation of ethylene from CO2 by catalytic electrolysis at a three-phase interface, 98 (2004) 515-521.
    [127] Y.-C. Hsieh, S.D. Senanayake, Y. Zhang, W. Xu, D.E.J.A.C. Polyansky, Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction, 5 (2015) 5349-5356.
    [128] Y. Zhang, L. Ji, W. Qiu, X. Shi, A.M. Asiri, X.J.C.C. Sun, Iodide-derived nanostructured silver promotes selective and efficient carbon dioxide conversion into carbon monoxide, 54 (2018) 2666-2669.
    [129] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M.J.N. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, 499 (2013) 316.
    [130] M. Ahmadi, T. Wu, B.J.A.M. Hu, A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics, 29 (2017) 1605242.
    [131] H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J.H. Heo, A. Sadhanala, N. Myoung, S.J.S. Yoo, Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes, 350 (2015) 1222-1225.
    [132] Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L.M. Pazos, D.J.N.n. Credgington, Bright light-emitting diodes based on organometal halide perovskite, 9 (2014) 687.
    [133] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M.V. Gustafsson, M.T. Trinh, S. Jin, X.J.N.m. Zhu, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors, 14 (2015) 636.
    [134] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J.J.S. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, 342 (2013) 341-344.
    [135] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang, S.D. Stranks, H.J. Snaith, R.J.J.N.P. Nicholas, Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites, 11 (2015) 582.
    [136] Y. Wu, P. Wang, X. Zhu, Q. Zhang, Z. Wang, Y. Liu, G. Zou, Y. Dai, M.H. Whangbo, B.J.A.M. Huang, Composite of CH3NH3PbI3 with Reduced Graphene Oxide as a Highly Efficient and Stable Visible‐Light Photocatalyst for Hydrogen Evolution in Aqueous HI Solution, 30 (2018) 1704342.
    [137] R. Naeem, R. Yahya, M.A. Mansoor, M.A.M. Teridi, M. Sookhakian, A. Mumtaz, M.J.M.f.C.-C.M. Mazhar, Photoelectrochemical water splitting over mesoporous CuPbI3 films prepared by electrophoretic technique, 148 (2017) 981-989.
    [138] J. Wang, H. Wang, Z. Han, J.J.F.o.C.S. Han, Engineering, Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid, 9 (2015) 57-63.
    [139] Y. Wang, H. Hu, Y. Sun, Y. Tang, L. Dai, Q. Hu, A. Fisher, X.J.J.A.M.I. Yang, Facile Synthesis of Nanostructural High-Performance Cu-Pb Electrocatalysts for CO2 Reduction, 6 (2019) 1801200.
    [140] M. Pérez-Fortes, J.C. Schöneberger, A. Boulamanti, G. Harrison, E.J.i.j.o.h.e. Tzimas, Formic acid synthesis using CO2 as raw material: Techno-economic and environmental evaluation and market potential, 41 (2016) 16444-16462.
    [141] X. Yu, P.G.J.J.o.P.S. Pickup, Recent advances in direct formic acid fuel cells (DFAFC), 182 (2008) 124-132.
    [142] M. Grasemann, G.J.E. Laurenczy, E. Science, Formic acid as a hydrogen source–recent developments and future trends, 5 (2012) 8171-8181.
    [143] D. Du, R. Lan, J. Humphreys, S.J.J.o.A.E. Tao, Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid, 47 (2017) 661-678.
    [144] R. Kortlever, I. Peters, S. Koper, M.T.J.A.C. Koper, Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd–Pt nanoparticles, 5 (2015) 3916-3923.
    [145] T.N. Huan, E.S. Andreiadis, J. Heidkamp, P. Simon, E. Derat, S. Cobo, G. Royal, A. Bergmann, P. Strasser, H.J.J.o.M.C.A. Dau, From molecular copper complexes to composite electrocatalytic materials for selective reduction of CO2 to formic acid, 3 (2015) 3901-3907.
    [146] S. Zhang, P. Kang, T.J.J.J.o.t.A.C.S. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate, 136 (2014) 1734-1737.
    [147] J.D. Watkins, A.B.J.C. Bocarsly, Direct Reduction of Carbon Dioxide to Formate in High-Gas‐Capacity Ionic Liquids at Post-Transition-Metal Electrodes, 7 (2014) 284-290.
    [148] S.Y. Choi, S.K. Jeong, H.J. Kim, I.-H. Baek, K.T.J.A.S.C. Park, Engineering, Electrochemical reduction of carbon dioxide to formate on tin–lead alloys, 4 (2016) 1311-1318.
    [149] S. Ni, X. Lv, T. Li, X.J.M.C. Yang, Physics, Fabrication of Cu2S cathode for Li-ion battery via a low temperature dry thermal sulfuration method, 143 (2013) 349-354.
    [150] P. Kar, S. Farsinezhad, X. Zhang, K.J.N. Shankar, Anodic Cu2S and CuS nanorod and nanowall arrays: preparation, properties and application in CO2 photoreduction, 6 (2014) 14305-14318.
    [151] J. ZHU, X.-C. YU, S.-M. WANG, W.-W. DONG, L.-H. HU, X.-D. FANG, S.-Y.J.A.P.-C.S. DAI, Application of Cu2S Counter Electrode in Quantum Dot-Sensitized Solar Cells, 29 (2013) 533-538.
    [152] C.-H. Lai, K.-W. Huang, J.-H. Cheng, C.-Y. Lee, B.-J. Hwang, L.-J.J.J.o.M.C. Chen, Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries, 20 (2010) 6638-6645.
    [153] M. Ye, X. Wen, N. Zhang, W. Guo, X. Liu, C. Lin, In situ growth of CuS and Cu1.8S nanosheet arrays as efficient counter electrodes for quantum dot-sensitized solar cells, Journal of Materials Chemistry A, 3 (2015) 9595-9600.
    [154] Y. Huang, Y. Deng, A.D. Handoko, G.K.L. Goh, B.S. Yeo, Rational Design of Sulfur-Doped Copper Catalysts for the Selective Electroreduction of Carbon Dioxide to Formate, ChemSusChem, 11 (2018) 320-326.
    [155] T. Shinagawa, G.O. Larrazábal, A.J. Martín, F. Krumeich, J. Pérez-Ramírez, Sulfur-modified copper catalysts for the electrochemical reduction of carbon dioxide to formate, ACS Catalysis, 8 (2018) 837-844.
    [156] S. Zhang, P. Kang, T.J. Meyer, Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate, J. Am. Chem. Soc., 136 (2014) 1734-1737.
    [157] F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang, D.R. MacFarlane, J. Zhang, Towards a better Sn: efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets, Nano Energy, 31 (2017) 270-277.
    [158] X. Min, M.W. Kanan, Pd-Catalyzed Electrohydrogenation of Carbon Dioxide to Formate: High Mass Activity at Low Overpotential and Identification of the Deactivation Pathway, J. Am. Chem. Soc., 137 (2015) 4701-4708.
    [159] S.Y. Choi, S.K. Jeong, H.J. Kim, I.-H. Baek, K.T. Park, Electrochemical Reduction of Carbon Dioxide to Formate on Tin–Lead Alloys, ACS Sustainable Chemistry & Engineering, 4 (2016) 1311-1318.

    無法下載圖示 全文公開日期 2024/08/12 (校內網路)
    全文公開日期 2029/08/12 (校外網路)
    全文公開日期 2022/08/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE