簡易檢索 / 詳目顯示

研究生: 謝淳屹
Chun-Yi Hsieh
論文名稱: 開發有機-無機鹵素鈣鈦礦複合薄膜於壓電元件應用
Development of Organic-Inorganic Halide Perovskite Composites for Piezoelectric Applications
指導教授: 蔡孟霖
Meng-Lin Tsai
楊伯康
Po-Kang Yang
口試委員: 蔡孟霖
Meng-Lin Tsai
楊伯康
Po-Kang Yang
蔡東昇
Dung-Sheng Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 51
中文關鍵詞: 有機-無機鹵素鈣鈦礦二維材料旋轉塗佈法壓電感測
外文關鍵詞: Organic-inorganic hybrid halogen perovskite, 2D materials, Spin coating, Piezoelectric, Sensing
相關次數: 點閱:408下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 1 第一章、緒論 1 1.1 前言和研究動機 1 1.2 壓電效應基本原理 2 1.3 有機-無機鹵素鈣鈦礦之特性 3 1.4 二維材料之壓電特性 4 2 第二章、文獻回顧 6 2.1 鈣鈦礦製備方法 6 2.2 過渡金屬硫化物製備方法 12 2.3 鈣鈦礦薄膜製備條件機制 14 2.4 壓電奈米發電機元件 (PENG) 16 2.5 壓電元件量測方式 18 3 第三章、實驗方法 20 3.1 實驗流程 20 3.2 實驗藥品、設備和分析儀器 21 3.2.1 實驗藥品 21 3.3 實驗設備 22 3.4 分析儀器 24 3.5 有機-無機鹵素鈣鈦礦薄膜和元件製備 27 4 第四章、結果與討論 30 4.1 有機-無機鹵素鈣鈦礦薄膜之X光繞射晶體分析 30 4.2 有機-無機鹵素鈣鈦礦之基本材料特性分析 30 4.2.1 光學特性 30 4.2.2 熱性能分析 31 4.3 有機-無機鹵素鈣鈦礦薄膜之形貌分析 32 4.4 二硫化鉬性質分析 34 4.5 有機-無機鹵素鈣鈦礦與二硫化鉬複合薄膜之形貌分析 35 4.6 有機-無機鹵素鈣鈦礦與二硫化鉬複合薄膜之元素分析 36 4.7 薄膜之壓電特性分析 36 4.8 壓電元件之特性分析 37 5 第五章、結論與未來展望 43 5.1 結論 43 5.2 未來展望 43 參考文獻 45

    [1] L. He, Y. Liu, P. Shi, H. Cai, D. Fu, and Q. Ye, “Energy harvesting and Pd(ii) sorption based on organic–inorganic hybrid perovskites.’’ ACS Applied Materials & Interfaces, 2020 12 (48), 53799-53806.
    [2] M.M. Rana, A.A. Khan, W. Zhu, M.F.A. Al Fattah, S. Kokilathasan, S. Rassel, et al. “Enhanced piezoelectricity in lead-free halide perovskite nanocomposite for self-powered wireless electronics.’’ Nano Energy, 101 (2022), p. 107631.
    [3] T. Kim, S. Park, V. Iyer et al. “Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites.’’ Nat Commun 14, 1846 (2023).
    [4] C. Ji, P. Wang, Z. Wu, Z. Sun, L. Li, J. Zhang, W. Hu, M. Hong, J. Luo, “Inch-size single crystal of a lead-free organic–inorganic hybrid perovskite for high-performance photodetector.’’ Adv. Funct. Mater. 2018, 28, 1705467.
    [5] A. Jain, O. Voznyy, and E. H. Sargent. “High-throughput screening of lead-free perovskite-like materials for optoelectronic applications.’’ The Journal of Physical Chemistry C. 2017 121 (13), 7183-7187.
    [6] S. Sun, M. Lu, X. Gao, Z. Shi, X. Bai, W. W. Yu, Y. Zhang, “0D Perovskites: unique properties, synthesis, and their applications.” Adv. Sci. 2021, 8, 2102689.
    [7] V. Jella, S. Ippili, J.H. Eom, J. Choi, S.G. Yoon. “Enhanced output performance of a flexible piezoelectric energy harvester based on stable MAPbI3-PVDF composite films.” Nano Energy, 53 (2018), pp. 46-56.
    [8] R. Ding, H. Liu, X. Zhang, J. Xiao, R. Kishor, H. Sun, B. Zhu, G. Chen, F. Gao, X. Feng, J. Chen, X. Chen, X. Sun, and Y. Zheng, “Flexible piezoelectric nanocomposite generators based on formamidinium lead halide perovskite nanoparticles.” Adv. Funct. Mater, (2016), 26: 7708-7716.
    [9] Swathi Ippili, Venkatraju Jella, Jaegyu Kim, Seungbum Hong, and Soon-Gil Yoon, “Unveiling Predominant Air-Stable Organotin Bromide Perovskite toward Mechanical Energy Harvesting.’’ ACS Applied Materials & Interfaces, 2020 12 (14), 16469-16480
    [10] Mallick, Z.; Saini, D.; Sarkar, R.; Kundu, T. K.; Mandal, D. “Piezo-Phototronic Effect in Highly Stable Lead-Free Double Perovskite Cs2SnI6-PVDF Nanocomposite: Possibility for Strain Modulated Optical Sensor’’. Nano Energy, 2022, 100, 107451
    [11] Guo, T.-M., Gong, Y.-J., Li, Z.-G., Liu, Y.-M., Li, W., Li, Z.-Y., Bu, X.-H., “A New Hybrid Lead-Free Metal Halide Piezoelectric for Energy Harvesting and Human Motion Sensing.’’ Small, 2022, 18, 2103829.
    [12] P. Szklarz , R. Jakubas , W. Medycki , A. Gagor , J. Cichos , M. Karbowiak and G. Bator , “(C3N2H5)3Sb2I9 and (C3N2H5)3Bi2I9: ferroelastic lead-free hybrid perovskite-like materials as potential semiconducting absorbers’’, Dalton Trans., 2022, 51 , 1850 —1860.
    [13] C. Fei, X. Liu, B. Zhu, D. Li, X. Yang, Y. Yang, Q. Zhou. “AlN piezoelectric thin films for energy harvesting and acoustic devices’’, Nano Energy, 51 (2018), pp. 146-161
    [14] Y. Zhang , H. Kim , Q. Wang , W. Jo , A. I. Kingon , S.-H. Kim and C. K. Jeong , “Progress in lead-free piezoelectric nanofiller materials and related composite nanogenerator devices.” Nanoscale Adv., 2020, 2 , 3131 —3149
    [15] Li, L., Zhang, Y. “Controlling the luminescence of monolayer MoS2 based on the piezoelectric effect.” Nano Res. 10, 2527–2534 (2017).
    [16] Karel-Alexander N. Duerloo, Mitchell T. Ong, and Evan J. Reed. “Intrinsic Piezoelectricity in Two-Dimensional Materials.’’ The Journal of Physical Chemistry Letters 2012 3 (19), 2871-2876
    [17] Y. Chen, S. Lan, M. Zhu. “Construction of piezoelectric BaTiO3/MoS2 heterojunction for boosting piezo-activation of peroxymonosulfate.” Chin. Chem. Lett., 32 (2021), pp. 2052-2056
    [18] B. Bagchi, N.A. Hoque, N. Janowicz, S. Das, M.K. Tiwari,“Re-usable self-poled piezoelectric/piezocatalytic films with exceptional energy harvesting and water remediation capability.’’ Nano Energy, 78 (2020), Article 105339,
    [19] Y. Chen, S. Lan, M. Zhu. Construction of piezoelectric BaTiO3/MoS2 heterojunction for boosting piezo-activation of peroxymonosulfate. Chin. Chem. Lett., 32 (2021), pp. 2052-2056
    [20] Cao S, Zou H, Jiang B, Li M and Yuan Q 2022 ‘’Incorporation of ZnO encapsulated MoS2 to fabricate flexible piezoelectric nanogenerator and sensor .“ Nano Energy 102 107635
    [21] Safie, NE, Azam, MA, Aziz, MFA, Ismail, M. “Recent progress of graphene-based materials for efficient charge transfer and device performance stability in perovskite solar cells.” Int J Energy Res. 2021; 45: 1347– 1374.
    [22] Kooijman, A.; Muscarella, L.A.; Williams, R.M. “Perovskite Thin Film Materials Stabilized and Enhanced by Zinc(II) Doping.” Appl. Sci. 2019, 9, 1678.
    [23] Karel-Alexander N. Duerloo, Mitchell T. Ong, and Evan J. Reed. “Intrinsic Piezoelectricity in Two-Dimensional Materials.” The Journal of Physical Chemistry Letters 2012 3 (19), 2871-2876
    [24] Wu, W., Wang, L., Li, Y. et al. “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics.” Nature 514, 470–474 (2014).
    [25] Yao, F., Peng, J., Li, R. et al. “Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals.” Nat Commun 11, 1194 (2020)
    [26] M. Wang, Y. Feng, J. Bian, H. Liu, Y. Shi. “A comparative study of one-step and two-step approaches for MAPbI3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cells,” Chem. Phys. Lett., 692 (2018), pp. 44-49.
    [27] Aifei Wang, Xingxu Yan, Mian Zhang, Shibin Sun, Ming Yang, Wei Shen, Xiaoqing Pan, Peng Wang, and Zhengtao Deng. “Controlled Synthesis of Lead-Free and Stable Perovskite Derivative Cs2SnI6 Nanocrystals via a Facile Hot-Injection Process.” Chemistry of Materials 2016 28 (22), 8132-8140
    [28] Lutfan Sinatra, Jun Pan, Osman M. Bakr. “Methods of Synthesizing Monodisperse Colloidal Quantum Dots.”Material Matters, 2017
    [29] C. Dong, X. Han, W. Li, Q. Qiu, J. Wang. “Anti-solvent assisted multi-step deposition for efficient and stable carbon-based CsPbI2Br all-inorganic perovskite solar cell.” Nano Energy, 59 (2019), pp. 553-559.
    [30] Tang, S., Deng, Y., Zheng, X., Bai, Y., Fang, Y., Dong, Q., Wei, H., Huang, J., Adv. “Composition Engineering in Doctor-Blading of Perovskite Solar Cells.” Energy Mater. 2017, 7, 1700302.
    [31] Park, M., Cho, W., Lee, G., Hong, S. C., Kim, M.-c., Yoon, J., Ahn, N., Choi, M., “Highly Reproducible Large-Area Perovskite Solar Cell Fabrication via Continuous Megasonic Spray Coating of CH3NH3PbI3.” Small 2019, 15, 1804005.
    [32] Tavakoli, M., Gu, L., Gao, Y. et al. “Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. “Sci Rep 5, 14083 (2015).
    [33] V. An, Y. Irtegov, C. De Izarra. “Study of tribological properties of nanolamellar WS2 and MoS2 as additives to lubricants.” J. Nanomater., 2014 (2014), p. 865839
    [34] K. Kalantar-zadeh, J.Z. Ou, T. Daeneke, M.S. Strano, M. Pumera, S.L. Gras. “Two-dimensional transition metal dichalcogenides in biosystems. “Adv. Funct. Mater., 25 (2015), p. 5086
    [35] C. Cantalini, L. Giancaterini, M. Donarelli. “NO2 Response to Few-Layers MoS2.” Tagungsband. (2012), pp. 1656-1659,
    [36] Z. Zhou, Y. Lin, P. Zhang, E. Ashalley, M. Shafa, H. Li, J. Wu, Z. Wang. “Hydrothermal fabrication of porous MoS2 and its visible light photocatalytic properties.” Mater. Lett., 131 (2014), pp. 122-124,
    [37] V.H.V. Quy, E. Vijayakumar, P. Ho, J.-H. Park, J.A. Rajesh, J. Kwon, J. Chae, J.-H. Kim, S.-H. Kang, K.-S. Ahn. “Electrodeposited MoS2 as electrocatalytic counter electrode for quantum dot- and dye-sensitized solar cells.” Electrochim. Acta, 260 (2018), pp. 716-725
    [38] Hai Li, Jumiati Wu, Zongyou Yin, and Hua Zhang. “Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets.” Accounts of Chemical Research, 2014 47 (4), 1067-1075
    [39] M. Yi and Z. Shen , “A review on mechanical exfoliation for the scalable production of graphene.” J. Mater. Chem. A, 2015, 3 , 11700 —11715
    [40] Sahoo, D., Kumar, B., Sinha, J. et al. “Cost effective liquid phase exfoliation of MoS2 nanosheets and photocatalytic activity for wastewater treatment enforced by visible light.” Sci Rep 10, 10759 (2020).
    [41] W. Qiao , S. Yan , X. He , X. Song , Z. Li , X. Zhang , W. Zhong and Y. Du , “Effects of ultrasonic cavitation intensity on the efficient liquid-exfoliation of MoS2 nanosheets.’’ RSC Adv., 2014, 4 , 50981 —50987
    [42] K. Manna, C. Hsieh, S. Lo, Y. Li, H. Huang, W. Chiang. “Graphene and graphene-analogue nanosheets produced by efficient water-assisted liquid exfoliation of layered materials.” Carbon, 105 (2016), pp. 551-555
    [43] Liu, C.; Cheng, Y.B.; Ge, Z. “Understanding of perovskite crystal growth and film formation in scalable deposition processes.” Chem. Soc. Rev. 2020, 49, 1653–1687.
    [44] Lee, J.W.; Lee, D.K.; Jeong, D.N.; Park, N.G. “Control of Crystal Growth toward Scalable Fabrication of Perovskite Solar Cells.” Adv. Funct. Mater. 2019, 29, 1807047.
    [45] F. Huang , Y. Dkhissi , W. Huang , M. Xiao , I. Benesperi , S. Rubanov , Y. Zhu , X. Lin , L. Jiang , Y. Zhou and A. Gray-Weale , “Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells.” Nano Energy, 2014, 10 , 10 —18
    [46] C. Falconi, G. Mantini, A. D׳Amico, Z.L. Wang. “Studying piezoelectric nanowires and nanowalls for energy harvesting.” Sens. Actuators B, 139 (2009), pp. 511-519
    [47] Y. Hu, Z.L. Wang. “Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors.” Nano Energy, 14 (2015), pp. 3-14.
    [48] Youfan Hu, Yan Zhang, Chen Xu, Guang Zhu, and Zhong Lin Wang. “High-Output Nanogenerator by Rational Unipolar Assembly of Conical Nanowires and Its Application for Driving a Small Liquid Crystal Display.” Nano Letters 2010 10 (12), 5025-5031
    [49] M.M. Rana, A.A. Khan, W. Zhu, M.F.A. Al Fattah, S. Kokilathasan, S. Rassel, et al. “Enhanced piezoelectricity in lead-free halide perovskite nanocomposite for self-powered wireless electronics.” Nano Energy, 101 (2022), p. 107631
    [50] Mondal, B.; Mishra, H. K.; Sengupta, D.; Kumar, A.; Babu, A.; Saini, D.; Gupta, V.; Mandal, D. “Lead-free perovskite Cs3Bi2I9-derived electroactive PVDF composite-based piezoelectric nanogenerators for physiological signal monitoring and piezo-phototronic-aided strained modulated photodetectors.” Langmuir 2022, 38, 12157
    [51] Wu, H.-S., Wei, S.-M., Chen, S.-W., Pan, H.-C., Pan, W.-P., Huang, S.-M., Tsai, M.-L., Yang, P.-K. “Metal-Free Perovskite Piezoelectric Nanogenerators for Human–Machine Interfaces and Self-Powered Electrical Stimulation Applications.” Adv. Sci. 2022, 9, 2105974.
    [52] B. Mahapatra, K.K. Patel, P.K. Patel. “A review on recent advancement in materials for piezoelectric/triboelectric nanogenerators.” Mater. Today.: Proc., 46 (2020), pp. 5523-5529
    [53] Pattipaka, S.; Bae, Y.M.; Jeong, C.K.; Park, K.-I.; Hwang, G.-T. “Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices.” Sensors 2022, 22, 9506.
    [54] Szklarz, P.; Jakubas, R.; Gagor, A.; Bator, G.; Cichos, J.; Karbowiak, M. “Inorg. [NH2CHNH2]3Sb2I9: a lead-free and low-toxicity organic–inorganic hybrid ferroelectric based on antimony(iii) as a potential semiconducting absorber.” Chem. Front. 2020, 7, 1780–1789.
    [55] G. Plechinger, S. Heydrich, J. Eroms, D. Weiss, C. Schüller, T. Korn; “Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes.” Appl. Phys. Lett. 3 September 2012; 101 (10): 101906.

    無法下載圖示 全文公開日期 2028/08/24 (校內網路)
    全文公開日期 2028/08/24 (校外網路)
    全文公開日期 2028/08/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE