簡易檢索 / 詳目顯示

研究生: 戚守為
Shou-Wei Chi
論文名稱: 考量陰影干擾之自主人形機器人於Robocup足球賽避障導航控制
Obstacle Avoidance Navigation of Autonomous Humanoid Robots with Shadow Interference for Robocup Soccer Games
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: 李明義
Ming-Yih Lee
蘇順豐
Shun-Feng Su
李維楨
Wei-Chen Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 82
中文關鍵詞: 室內陰影估測避障導航人型機器人
外文關鍵詞: indoor shadow estimation, obstacle avoidance navigation, humanoid robot
相關次數: 點閱:291下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以RoboCup全尺寸人形機器人競賽為主題,提出一考量陰影干擾之避障導航控制研究;其主要針對一對一足球競賽與帶球避障等兩項比賽項目進行探討。由於在比賽環境中影像系統存在著干擾,如環境照明以及陰影遮避等問題,其造成在影像辨識以及特徵擷取之困難,甚至可能導致誤判的情形發生。雖然影像白平衡之方法可以解決環境照明動態變化之問題,但在面對陰影干擾的問題上大多著重於僅以影像處理方式來解決,但卻無對環境光源配置加以考慮,因此無法有效且快速地解決問題。因此本論文針對室內環境,提出環境光源位置之預估以及初步障礙物位置等資訊,進行光學幾何運算來預估障礙物陰影之位置。並以所預估之障礙物陰影在影像中之位置,進行影像辨識之條件修正。此外,本論文之避障導航系統根據不同之狀態分別使用人工位能場(Artificial Potential Field)以及決策樹(Decision Tree)之方法達成。最後,本論文除了探討在實驗室之測試之外,也以參加於荷蘭所舉辦之RoboCup 2013年比賽之情形進行比賽過程與結果之說明。


This study proposes an obstacle avoidance navigation approach by considering shadow interference for the “obstacle avoidance and dribbling” and the “dribble and kick” matches in RoboCup adult-size humanoid robot competitions. Practically, there exist interferences in image systems such as illumination variation and shadow effects. These interferences result in the problems in recognizing the image targets. Although conventional white balance methods may resolve the problems of illumination variation, shadow interferences also exhibit challenges for image recognitions. Nevertheless, conventional shadow problems were resolved with image processing approaches, and they did not consider the arrangements of lighting systems and obstacles’ shadow positions. Therefore, this thesis proposes the position detection of lighting sources in an indoor environment, and then the obstacle’s position is used to estimate the shadow position in the image in terms of optical geometry. The estimated shadow position in the image is further used to revise the image threshold values in the shadow area. In addition, the artificial potential field (APF) and decision tree approaches are used to achieve the obstacle avoidance navigation. Finally, in addition to the experiments in our laboratory, the participation in the RoboCup 2013 competition in Netherlands was presented to discuss the performance of the proposed approaches.

誌謝 III 摘要 IV Abstract V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 論文架構 3 1.4 文獻回顧 4 1.4.1 影像白平衡 4 1.4.2 陰影偵測 9 1.4.3 機器人導航路徑規劃 11 1.4.4 文獻總結 13 第二章 系統架構 14 2.1 系統簡介 14 2.2 系統各部件介紹 15 2.2.1 視覺系統運算平台 15 2.2.2 影像感測器 16 2.2.3 伺服馬達 17 2.2.4 人型機器人運動平台 18 2.3 系統控制流程 20 第三章 考量陰影干擾之視覺演算法 21 3.1 影像處理演算法流程 22 3.2 影像前處理 24 3.3 目標物辨識 25 3.3.1 快速物件連通標記演算法 25 3.3.2 障礙物偵測 26 3.3.3 目標球偵測 27 3.3.4 球門偵測 29 3.3.5 守門員偵測 30 3.4 目標物定位系統 31 3.5 光源偵測與定位 34 3.5.1 影像光源辨識 34 3.5.2 光源定位 36 3.6 陰影補償系統 38 3.6.1 估測陰影定位 39 3.6.2 估測陰影檢測 42 3.6.3 陰影區域色彩判斷校正 43 第四章 機器人導航策略與控制 47 4.1 帶球避障項目 47 4.1.1 帶球避障項目策略分析 47 4.1.2 帶球避障控制架構 48 4.2 一對一足球競賽項目 52 4.2.1 一對一足球競賽項目策略分析 52 4.2.2 一對一足球競賽控制架構 53 4.3 人工位能場之避障導航控制(Ball Tracking) 55 4.3.1 人工位能場 56 4.3.2 避障導航控制架構 59 4.4 帶球之避障導航控制(Dribbling) 61 第五章 實驗結果與討論 63 5.1 影像視覺分析 63 5.1.1 光源辨識分析 63 5.1.2 目標物定位分析 65 5.1.3 障礙物陰影檢測 66 5.1.4 陰影區域內之定位分析 68 5.2 導航控制系統之模擬分析 69 5.2.1 人工位能場力場形狀分析 70 5.2.2 帶球避障之模擬軌跡分析 71 5.2.3 一對一足球競賽項目之模擬軌跡分析 72 5.3 影像整合導航控制實驗 72 5.3.1 機器人於運動中之視覺定位穩定度分析 73 5.3.2 帶球避障項目之軌跡分析 74 5.3.3 一對一足球競賽項目之軌跡分析 76 第六章 結論與未來研究方向 78 6.1 結論 78 6.2 未來研究方向 78 參考文獻 80

[1] V. Chikane and C.S. Fuh, “Automatic White Balance for Digital Still Cameras,” Journal of Information Science and Engineering, vol. 22, no. 3, pp. 497 – 509, 2006.
[2] 陳柏翰,「影像亮度變化對白平衡演算法影響之研究」,碩士學位論文,北台灣科學技術學院,民國97年。
[3] M. Fedor, “Approaches to Color Balancing,” Department of Psychology, Stanford University, U.S.A, 1998.
[4] J. Chiang and F.A. Turkait, “Color Balancing Experiments with the HP-Photo Smart-C30 Digital Camera,” PSYCH221/EE362 course project, Department of Psychology, Stanford University, U.S.A., 1999.
[5] 邱贊生,「數位相機之自動白平衡」,碩士學位論文,國立台灣大學,民國89年。
[6] J.Y. Huo, Y.L. Chang, J. Wang, and X.X. Wei, "Robust Automatic White Balance Algorithm Using Gray Color Points in Images," IEEE Transactions on Consumer Electronics, vol. 52, no. 2, pp. 541 – 546, 2006.
[7] H.C. Hung and C.L. Chen, "A Fuzzy Inference Model for Removing the Color Cast of Digitally Captured Images Under Unknown Illuminants," International Conference on Fuzzy Theory and its Applications, pp. 192 – 197, 2012.
[8] E. Land, "An Alternative Technique for the Computation of the Designator in the Retinex Theory of Color Vision," Proceedings of the National Academy of Science, vol. 83, no. 10, pp. 3078 – 3080, 1986.
[9] Z. Rahman, D. Jobson, and G. Woodell, "Retinex Processing for Automatic Image Enhancement," The Human Vision and Electronic Imaging VII Conference, vol. 4662, pp. 390 - 401, 2002.
[10] 盧俊良,「基於光線與臉部表情變化下之人臉辨識」,碩士學位論文,國立中央大學,民國98年。
[11] G.D. Finlayson, S.D. Hordley, C. Lu, and M.S. Drew, "On the Removal of Shadows from Images," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 1, pp. 59 – 68, 2006.
[12] J. Zhu, K.G.G. Samuel, S.Z. Masood, and M.F. Tappen, "Learning to Recognize Shadows in Monochromatic Natural Images," IEEE International Conference on Computer Vision and Pattern Recognition, pp. 223 – 230, 2010.
[13] W.H. Huang, B.R. Fajen, B.R. Fink, and W.H. Warren, "Visual Navigation and Obstacle Avoidance Using a Steering Potential Function," Robotics and Autonomous Systems, vol. 54, pp. 288-299, 2006.
[14] C.C. Wong, C.T. Cheng, K.H. Huang, and Y.T. Yang, "Fuzzy Control of Humanoid Robot for Obstacle Avoidance," International Journal of Fuzzy Systems, vol. 10, no. 1, pp. 1 – 10, 2008.
[15] Z. Su, B. Zeng, G. Liu, F. Ye, and M. Xu, "Application of Fuzzy Neural Network in Parameter Optimization of Mobile Robot Path Planning Using Potential Field," IEEE International Symposium on Industrial Electronics, pp. 2125 – 2128, 2007.
[16] Axiomtek Corporation [Online], Available at: http://www.axiomtek.com.tw/products/ViewProduct.asp?view=680/. (Access: 2013/07/26)
[17] L. He, Y. Chao, K. Suzuki, and K. Wu, "Fast Connected-Component Labeling," Pattern Recognition, vol. 42, no. 9, pp. 1977 – 1987, 2009.
[18] C.H. Kuo, H.C. Chou, S.W. Chi, and Y.D. Lien, "Vision-based Obstacle Avoidance Navigation with Autonomous Humanoid Robots for Structured Competition Problems," International Journal of Humanoid Robotics, vol.10, no. 3, 2013.
[19] P. Veelaert and W. Bogaerts, "Ultrasonic Potential Field Sensor for Obstacle Avoidance," IEEE Transactions on Robotics and Automation, vol. 15, no. 4, pp. 774 – 779, 1999.
[20] 許耀升,「具反應導航之嵌入式電動輪椅控制系統」,碩士學位論文,國立台灣科技大學,民國100年。
[21] PhaseSpace Motion Capture [Online], Available at: http://www.phasespace.com/. (Access: 2013/07/26)
[22] C.H. Kuo, H.C. Chou, Y.D. Lien, M.H. Wu, and S.W. Chi, “Team Description Paper: HuroEvolutionAD Humanoid Robot for RoboCup 2013 Humanoid League,” Department of Electrical Engineering, National Taiwan University of Science and Technology, 2013.
[23] 張書豪,「具自主導航與避障之嵌入式移動機器人控制系統開發」,碩士學位論文,國立台灣科技大學,民國99年。

無法下載圖示 全文公開日期 2018/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE