簡易檢索 / 詳目顯示

研究生: 楊智邦
Chih-Pang Yang
論文名稱: 基於光譜感測原理之登月酬載模擬器設計與整合
Development and Integration of Lunar Payload Simulator Based on Spectral Sensing
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 沈志霖
Ji-Lin Shen
柯正浩
Cheng-Hao Ko
徐勝均
Sheng-Dong Xu
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 84
中文關鍵詞: 登月光譜酬載可見光光譜紅外光譜月表反射率
外文關鍵詞: Moon Landing, Spectral Payload, Visible Light Spectroscopy, Near Infrared Spectroscopy, Lunar Surface Reflectivity
相關次數: 點閱:157下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在所有外太空任務中,光譜及影像酬載是一種不可或缺的重要工具,通過光譜分析,可以檢測及定量月球表面的未知物質,影像分析則可以獲取月表的地形、地貌等重要資訊,本篇論文將結合這兩種功能設計一套可安裝於月球漫遊車上之影像/光譜酬載。

研究月表物質的光譜特性是了解月球礦物組成以及結構的重要手段,尤其是可見光至短波紅外波段 (400 nm ∼ 2000 nm) 是研究月表物質的重要光譜波段。在此次研究中設計一套偵測波長為 400 nm ∼ 2500 nm、重量低於 2 kg、平均消耗功率低於 2Watt、整體尺寸約 10 × 10 × 20 cm3 的酬載儀器,酬載儀器系統包括:(1) 成像次系統;(2) 光譜次系統以及 (3) 電控次系統為執行任務的三種主要次系統。

整體設計由本篇論文提出,由捷揚航電股份有限公司協助整合與研製,本篇論文提出之影像/光譜酬載相比於國際登月酬載具有結構簡單、原理成熟、功耗低,體積小、重量輕以及低成本等優點。登月影像/光譜酬載的研製將進一步推動國內太空科技與產業,使本國太空產業在國際上具有競爭力,同時培養我國太空科技研發人才。


In all outer space missions, spectrum and image payloads are indispensable and important tools. Through spectral analysis, unknown substances on the lunar surface can be detected and quantified, and image analysis can obtain important information such as the topography and landform of the lunar surface. This thesis will combine these two functions to design an image/spectrum payload that can be installed on a lunar rover.

Studying the spectral characteristics of lunar surface materials is an important means to understand the composition and structure of lunar minerals, especially the visible light to short-wave infrared band is an important spectral band for studying lunar surface materials. In this study, a set of payload instruments with a detection wavelength of 400nm ∼ 2500nm, a weight of less than 2kg, an average power consumption of less than 2 Watt, and an overall size of about 10 × 10 × 20cm3 was designed. The payload instrument system includes: (1) Imaging subsystem; (2) Spectral subsystem and (3) Electronic control subsystem, this are the three main subsystems for performing tasks.

The overall design was proposed by this paper, and Liscotech System assisted in the
integration and development. Compared with the international moon landing payload, the image/spectral payload proposed in this paper has simple structure, mature principle, low power consumption, small size, light weight and low advantages such as cost. The development of lunar image/spectral payload will further promote domestic space industry competitive in the world, and at the same time cultivate my country’s space technology research and development talents.

第一章 緒論 1 1.1 前言 1 1.2 文獻探討 2 1.3 研究動機 4 1.4 論文架構 5 第二章 酬載儀器設計 6 2.1 成像次系統 8 2.2 光譜次系統 11 2.2.1 線性漸變濾波片模組 13 2.2.2 光感測器模組 16 2.3 電控次系統 20 2.3.1 控制模組 22 2.3.2 馬達模組 23 2.3.3 溫度感測器模組 24 2.3.4 電源模組 25 2.4 酬載重量表 26 第三章 酬載儀器操作模式設計 29 3.1 操作流程 30 3.2 安全機制設計 35 3.3 操作模式功耗估算 38 第四章 模擬月表反射實驗方法與結果 41 4.1 實驗方法 43 4.1.1 輻射照度校正 44 4.1.2 反射材料選用 50 4.1.3 實驗架構 51 4.2 實驗結果 55 4.3 實驗結論 60 第五章 環境測試分析 62 5.1 輻射測試 62 5.2 熱模擬分析 66 第六章 結論與未來規劃 69 參考文獻 70

1. 于艳梅, 甘甫平, 周萍, 程思思, and 王志一, “月地岩矿光谱特征对比及月表信息提 取方法简介,” 自然资源遥感, vol. 21, no. 4, pp. 45–48, 2009.

2. 陈建平, 王翔, 高光大, and 姚美娟, “基于光谱特征的月球岩性分类方法研究—— 以 apollo 16 登月区域为例,” 岩石学报, no. 1, pp. 77–86, 2016.

3. 田咪, “宽温度月表红外光谱特性仿真及其评估技术,” Ph.D. dissertation, 中国科学 院研究生院 (上海技术物理研究所), 2016.

4. T. Liu, G. Michael, M.-H. Zhu, and K. Wünnemann, “Predicted sources of samples returned from chang'e- 5 landing region,” Geophysical Research Letters, vol. 48, no. 8, p. e2021GL092434, 2021.

5. C. Li, H. Hu, M.-F. Yang, Z.-Y. Pei, Q. Zhou, X. Ren, B. Liu, D. Liu, X. Zeng, G. Zhang et al., “Characteristics of the lunar samples returned by the chang'e-5 mission,” National science review, vol. 9, no. 2, p. nwab188, 2022.

6. J. Li, Y. Gui, R. Xu, Z. Zhang, W. Liu, G. Lv, M. Wang, C. Li, and Z. He, “Applications of aotf spectrometers in in situ lunar measurements,” Materials, vol. 14, no. 13, p. 3454, 2021.

7. Y. Jia, Y. Zou, J. Ping, C. Xue, J. Yan, and Y. Ning, “The scientific objectives and payloads of chang'e- 4 mission,” Planetary and Space Science, vol. 162, pp. 207–215, 2018.

8. C. Li, Z. Wang, R. Xu, G. Lv, L. Yuan, Z. He, and J. Wang, “The scientific information model of chang'e-4 visible and near-ir imaging spectrometer (vnis) and in-flight verification,” Sensors, vol. 19, no. 12, p. 2806, 2019.

9. 周昌义, 王赤, 李慧军, 孙辉先, 江源源, 何志平, 周斌, 杨建峰, 周维佳, 胡永富 et al., ““嫦娥五号"探测器有效载荷分系统设计,” 深空探测学报 (中英文), vol. 8, no. 3, pp. 290–298, 2021.

10. C. Li, J. Liu, X. Ren, W. Zuo, X. Tan, W. Wen, H. Li, L. Mu, Y. Su, H. Zhang et al., “The chang'e 3 mission overview,” Space Science Reviews, vol. 190, pp. 85–101, 2015.

11. C. Li, W. Zuo, W. Wen, X. Zeng, X. Gao, Y. Liu, Q. Fu, Z. Zhang, Y. Su, X. Ren et al., “Overview of the chang'e-4 mission: Opening the frontier of scientific exploration of the lunar far side,” Space Science Reviews, vol. 217, pp. 1–32, 2021.

12. J. Vila-Francés, J. Calpe-Maravilla, L. Gomez-Chova, and J. Amorós-López, “Design of a configurable multispectral imaging system based on an aotf,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 58, no. 1, pp. 259–262, 2011.

13. Z. Ji, Z. He, Y. Gui, J. Li, Y. Tan, B. Wu, R. Xu, and J. Wang, “Research and application validation of a feature wavelength selection method based on acousto-optic tunable filter (aotf) and automatic machine learning (automl),” Materials, vol. 15, no. 8, p. 2826, 2022.

14. H. Tang, J. Gao, J. Zhang, X. Wang, and X. Fu, “Preparation and spectrum characterization of a high quality linear variable filter,” Coatings, vol. 8, no. 9, p. 308, 2018.

15. C.-H. Ko, Y.-H. Wu, S. Chakraborty, K. J. Shah, J.-R. Tsai, B.-J. Wang, S.-F. Lin, and C.-D. Hsiao, “Two-dimensional modeling with experimental verification of a linear variable filter for spectral order sorting of 400-1000nm,” in Conference on Lasers and Electro-Optics/Pacific Rim. Optica Publishing Group, 2017, p. s0957.

16. J. Liu, X. Zeng, C. Li, X. Ren, W. Yan, X. Tan, X. Zhang, W. Chen, W. Zuo, Y. Liu et al., “Landing site selection and overview of china's lunar landing missions,” Space Science Reviews, vol. 217, pp. 1–25, 2021.

17. B. Wu, J. Huang, Y. Li, Y. Wang, and J. Peng, “Rock abundance and crater density in the candidate chang’e-5 landing region on the moon,” Journal of Geophysical Research: Planets, vol. 123, no. 12, pp. 3256–3272, 2018.

18. 马明, 陈圣波, 路鹏, 肖扬, and 杨倩, “模拟月壤发射率光谱测量实验及精度评定,” 光谱学与光谱分析, vol. 38, no. 9, pp. 2866–2871, 2018.

19. 孟治国, 陈圣波, 崔腾飞, and 连懿, “基于嫦娥一号卫星激光高度计数据的月表有 效反射率,” 吉林大学学报: 地球科学版, vol. 40, no. 3, pp. 721–725, 2010.

20. C. Li, D. Liu, B. Liu, X. Ren, J. Liu, Z. He, W. Zuo, X. Zeng, R. Xu, X. Tan et al., “Chang'e-4 initial spectroscopic identification of lunar far-side mantle-derived materials,” Nature, vol. 569, no. 7756, pp. 378–382, 2019.

21. M. Gussenhoven and E. Mullen, “Space radiation effects program: An overview,” IEEE Transactions on nuclear Science, vol. 40, no. 2, pp. 221–227, 1993.

22. R. H. Maurer, M. E. Fraeman, M. N. Martin, and D. R. Roth, “Harsh environments: space radiation,” Johns Hopkins APL technical digest, vol. 28, no. 1, p. 17, 2008.

23. C. Krishnaprakas, K. B. Narayana, and P. Dutta, “Heat transfer correlations for multilayer insulation systems,” Cryogenics, vol. 40, no. 7, pp. 431–435, 2000.

無法下載圖示 全文公開日期 2026/08/09 (校內網路)
全文公開日期 2026/08/09 (校外網路)
全文公開日期 2026/08/09 (國家圖書館:臺灣博碩士論文系統)
QR CODE