簡易檢索 / 詳目顯示

研究生: 葉昱彣
Yu-Wen Yeh
論文名稱: 對排聚苯乙烯/鄰二甲苯溶液凝膠化行為之研究
A Study on Gelation Behavior of s-Polystyrene/o-Xylene Solution
指導教授: 洪伯達
Po-Da Hong
口試委員: 陳志堅
Jyh-Chien Chen
王英靖
Ing-Jing Wang
廖文彬
Wen-Bin Liau
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 33
中文關鍵詞: 對排聚苯乙烯小角光散射傅立葉紅外光譜儀凝膠化凝膠
外文關鍵詞: gel, gelation, s-PS, SALS, FTIR
相關次數: 點閱:210下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用s-PS/o-Xylene高分子溶液系統觀察其凝膠化過程。首先在sPS/o-Xylene溶液系統建構相圖主要分成gel-sol curve與sol-gel curve。gel-sol curve是代表凝膠瓦解溫度,也就是凝膠熔點,以DSC每分鐘10℃的升溫速度決定凝膠的瓦解溫度。sol-gel curve是凝膠形成溫度,以不同體積分率的sPS/o-Xylene溶液在不同溫度下凝膠化一天,以紀錄能形成凝膠化的最低溫度定為凝膠形成溫度。
    以FTIR來觀察凝膠化過程中所構成凝膠網絡架橋點的TTGG構象吸收度的變化,並運用化學反應動力學的觀念推導出TTGG構象吸收強度增加速率與濃度的作圖,其斜率為每一個架橋點所構成的TTGG segment數目。並且若將TTGG構象聚集成架橋點的過程視為晶核成長的過程,用穩定成核理論描述TTGG segment 聚集成有序區也就是凝膠網絡結構的架橋點。
    在小角光散射部分,凝膠化過程在Hυ散射會出現X Type的圖型。經由Debye-Bueche理論分析可以得到凝膠特徵尺寸。將分析出的凝膠尺寸對照SEM圖形,發現凝膠特徵尺寸會與凝膠網絡的尺寸相符,因此Hυ的散射強度是取向漲落形成凝膠的網絡結構所貢獻。


    This study discusses mainly gelation kinetics of the s-PS/o-Xylene solutions. At first, the phase diagram could be separated into two parts by gel-sol and sol-gel curves. The gel-sol curve means gel melting temperature determined by DSC with a heating rate of 10℃/min. The sol-gel curve represents the temperature of could be gel formation temperature which is determined by observing gelation in various volume fraction for one day .
    It observed variation of the TTGG conformation in gelation process by FTIR. It applied the chemical kinetics to determine the process of TTGG segment aggregating to form the junction point. We can know if it plot rate of increasing intensity of the TTGG conformation and concentration, and the slope means the number of TTGG segment in a junction point. If the process of the aggregation of TTGG segments into junction points can be viewed as the process of the growth of nuclei. According to stable nucleation theory, if ln(dI572 /dt) and Tm2/[T(ΔT)2] have linear relationship, it should be reasonable to use stable nucleation theory to describe the formation of junction points through the TTGG segment aggregation.
    In SALS part, it is observed that an X type pattern can be obtained from the gel of s-PS/o-Xylene solution in Hυ mode. By analyzing SALS data through Debye - Bueche theory, we can know the characteristic size of gel(ξ).Through comparing ξ with the picture of our gel network by SEM, we can find ξ is about the scale of the size of gel network, and hence the intensity of Hυ scattering is distributed by the orientational fluctuation which forms network of gel.

    論文提要內容 I ABSTRACT III 誌 謝 IV 目錄 V 圖表目錄 VI 論文符號表 X 第一章 前 言 1 1.1 凝膠的定義與分類 1 1.2 凝膠化理論-逾滲模型(THE PERCOLATION MODEL) 4 1.3 成核凝膠(NUCLEATION GEL) 5 1.4 小角光散射在物理凝膠上的解析 6 1.5 高分子對排聚苯乙烯(SYNDIOTACTIC POLYSTYRENE)凝膠 8 1.6 研究目的 9 第二章 實驗部分 10 2.1 藥品及樣品配製 10 2.2 實驗方法 10 2.2.1 Gel-Sol 轉移溫度(Tmg)曲線測定 10 2.2.2 Sol-Gel曲線 10 2.2.3 DSC求得的凝膠熔點 10 2.2.4 偏光顯微鏡觀察(POM) 11 2.2.5 掃描式電子顯微鏡(SEM) 11 2.2.6 傅立葉轉換紅外線光譜(FTIR) 11 2.2.7 小角光散射(SALS) 11 第三章 結果與討論 13 3.1 相圖 13 3.2 藉由FTIR觀察凝膠成長動力學 18 3.3 S-PS/O-XYLENE 凝膠系統小角光散射研究 24 第四章 總結 31 參考文獻 32

    1. Flory, P. J., Disc Farad Sco., 57, 1 (1974).
    2. Nijenhuis, K. T., Thermoreversible Network (1992).
    3. Guenet, J., Thermoreversible Gelation of Polymer and Biopolymer (1992).
    4. Stauffer, D.; Coniglio, A.; Adam, M., Gelation and critical phenomena, Adv. Polym. Sci. 44, 103 (1982).
    5. De Gennes, P. G., Scaling Concepts in Polymer Physic (Cornell University, Ithaca, New York,1979).
    6. Lin, C. S., A Stdudy of Structure Formation in PVF/Cyclohexanone Gels (NTUST Master's thesis, 1996).
    7. Chou, C. M.; Hong, P. D., Macromolecules, 36, 7331 (2003).
    8. Chou, C. M.; Hong, P. D., Macromolecules, 37, 5596 (2004).
    9. Stein, R. S.; Wilson, P.R., J. Appl. Phys., 33, 1914 (1962).
    10. Debye, P.; Bueche, A. M., J. Appl. Phys. 33, 1914 (1949).
    11. Ishihara, N.; Seimiya, T.; Kuramoto, M.; Uoi, M., Macromolecules, 19, 2465 (1986).
    12. Xu, Y.; Asano, T.; Petermann, J. Polymer, 30, 590, (1989).
    13. Chatani, Y.; Shimane, Y.; Ijitsu, T.; Yukinari, T., Polymer, 34, 1625(1993).
    14. Kobayashi, M.; Nakaoki, T., Macromolecules, 22, 4377(1989).
    15. Gowd, E. B.; Nair, S. S.; Ramesh, C., Macromolecules, 36, 7388(2003).
    16. Van Hooy-Coretjens, C. S. J.; Magusin, P. C. M. M.; Rastogi, S.; Lemstra, P. J., Macromolecules 35, 6630 (2000).
    17. Daniel, C.; Deluca, M. D.; Guenet, J. M., Polymer, 37, 1273(1996).
    18. Shimizu, H.; Wakama, T.; Wada, R.; Okabe, M.; Tanaka, F., Polym.J., 37,294 (2005).
    19. Rudder, J. D.; Berghmans, H. F.; Schryver, C. D., Macromolecules, 35, 9529 (2002).
    20. Tsutsui,T.; Katsumata, H.; Fukatsu, H.; Yoshimizu, T.; Kinoshita, Y., Polym. J., 31, 268(1999).
    21. Deberdt, F.; Berghmans, H., Polymer, 35, 1694(1994).
    22. Kobayashi, M.; Tsumura, K.; Tadokoro, H., J. Polym. Sci., Polym. Phys. Ed., 6, 1493 (1968).
    23. Nakaoki, T.; Kobayashi, M., Rep. Progr. Polym. Phys. Jpn, 34, 359(1991).
    24. Daniel, C., Macromol. Symp. 251, 1(2007).
    25. Kobayashi, M.; Kozasa, T., Appl. Spectrosc., 47, 9(1993).
    26. Ohkura, M.; Kanaya, T.; Kaji, K., Polymer, 33, 5044(1992).
    27. Dikshit , A. K.; Nandi, A. K., Macromolecules, 31, 8886(1998).
    28. Mandelkern, L., Crystallization of polymer, New York: Mc Graw-Hill (1964).
    29. Hong, P. D.; Chou, C. M., Polymer, 41, 8311(2000).
    30. Penning, A. J., J. Polym. Sci.; Polym. Symp., 59, 55(1997).
    31. Stein, R. S.; Rhodes, M. B., J .Appl. Phys., 31, 1873 (1960).
    32. Clough, S., van Aartsen, J. J., Stein, R. S., J. Appl. Phys., 36, 3072 (1965).
    33. Petekidis, G.; Vlassopoulos, D.; Fytas, G.; Rulkens, R.; Wegner, G., Macromole- cules, 31, 6129 (1998).
    34. Murakami, Y.; Hayashi, N.; Hashimoto, T.; Kawai, H., Polym. J., 4, 452 (1973).
    35. Rhodes, M.; Stein, R. S., J. Polym. Sci., Part A-2, 7, 1539(1969).
    36. Matsuo, M.; Miyoshi, S.; Azuma, M.; Nakano, Y.; Bin, Y., Phys. Rev. E, 72, 041403 (2005)
    37. Debye, P.; Bueche, A. M., J. Appl. Phys., 20,518 (1949).
    38. Debye, P.; Anderson, H.R.; Brumberger, H., J. Appl. Phys., 28, 679(1957).
    39. Kizilay, M. Y.; Okay, O., Polymer, 44, 5239(2003).

    QR CODE