簡易檢索 / 詳目顯示

研究生: 陳翰霖
Han-Lin Chen
論文名稱: 以醋酸纖維素為載體製備單寧酸電紡奈米複合膜及其抗菌抗氧化能力之研究
Electrospun Tannic Acid Blended Cellulose Acetate Nanocomposite Film and its Antimicrobial, Antioxidant Applications
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 何明樺
Ming-Hua Ho
王勝仕
Sheng-Shih Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 93
中文關鍵詞: 活性氧化物單寧酸醋酸纖維素金屬多酚網銀奈米顆粒
外文關鍵詞: Reactive Oxygen Species, Tannic Acid, Cellulose Acetate, Metal-Phenolic Networks, Silver Nanoparticles
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

一般傷口癒合過程中常常會受到過量氧自由基和細菌感染的阻礙,傷口為產生豐富的活性氧化物(Reactive Oxygen Species; ROS)來抵抗病原菌,反而使細胞內反應性氧化物的累積導致氧化壓力,進而損害細胞組成成分並啟動細胞死亡機制。因此理想的傷口敷料應具有良好的ROS清除性能和相當的抗菌能力。在本論文中,利用源自於植物-單寧酸(Tannic Acid; TA)的抗氧化能力,以TA為主體與醋酸纖維素(Cellulose Acetate; CA)載體進行電紡來製備奈米複合膜,並引入ZrIV離子與TA自組裝合成金屬多酚網(Metal-Phenolic Networks; MPNs),透過萬能試驗機測試奈米複合膜的拉伸強度,證實了當ZrIV離子與TA產生交聯之後的楊氏模量提升1.5倍,且同時間下與無添加ZrIV離子相比,減少了50% 的TA於水中的釋放速率。此外利用TA的還原性能將銀氨溶液(托倫試劑)在奈米纖維表面上原位還原出銀奈米顆粒(AgNPs),以簡單方式構建了一種具有優異抗氧化活性和出色抗菌性能的新型奈米複合膜敷料。接著以950 μL之DPPH・(0.15 mM)作為模擬之自由基與50 μL溶有奈米複合膜之溶液 (0.2 mg mL-1)反應,可於可見光光譜中517 nm處之特徵峰觀察到吸光值從1.52下降到0.55,由公式得出對自由基之去除率達到67%,證實所製備的奈米複合膜具有抗氧化去除自由基的能力。XRD分析鑑定奈米纖維表面上之奈米銀平均直徑為9.2 nm。此外,TGA證實了奈米銀佔奈米複合膜總重量大於50%,也說明此TA奈米複合膜具高度還原能力。此奈米複合膜尤其對大腸桿菌具有非常突出的抗菌效果,與OD 值為1之菌液接觸1 小時之內能達到100%之消滅率。再以L929細胞進行測試,透過MTT方法證明了所有的奈米複合膜皆能促進細胞增殖,具有良好的生物相容性。


During the wound healing process, the presence of excessive reactive oxygen species (ROS) and bacterial infections often impede optimal wound recovery. Wound generally generates abundant ROS to counteract pathogens; however, this paradoxically leads to oxidative stress within cells due to the accumulation of ROS. Therefore, an ideal wound dressing materials should possess robust ROS scavenging capabilities along with an effective antibacterial activity. In this study, the antioxidant capacity of tannic acid (TA) was harnessed to fabricate a nanocomposite membrane along with cellulose acetate (CA) via electrospinning. Zirconium IV (Zr IV) ions were employed to form metal-phenolic networks (MPNs) with TA in the electrospun TA-CA nanofibers consisted nanocomposite. Tensile strength of the nanocomposite membrane revealed a 1.5-fold increase in Young's modulus upon crosslinking with Zr ions. Concurrently, the release rate of TA from nanocomposite decreased 50% as compared to the case in the absence of Zr ions for crosslinking. Furthermore, silver nanoparticles (AgNPs) were synthesized in situ on fiber surface via the reduction of silver ammonia solution (Tollen's reagent) due to the reductive activity of TA. This facile and novel nanocomposite membrane prepared demonstrated its exceptional antioxidant and antibacterial activities. X-ray diffraction analysis confirmed an average diameter of 9.2 nm for the silver nanoparticles deposited on the fiber surface. Thermogravimetric analysis (TGA) showed that AgNPs constituted over 50% of the total nanocomposite weight. Within 1 hour contact with Escherichia coli suspension of OD 1.0, 100% eradication was observed. Cell viability assays using L929 cells via MTT method underscored the positive impact of all nanocomposite membranes on cell proliferation, attesting to their favorable biocompatibility.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究目的與內容 3 1.2.1 研究目的 3 1.2.2 研究內容 3 第二章 文獻回顧 5 2.1 單寧酸(TA) 5 2.2 金屬多酚網(MPNs) 8 2.3 靜電紡絲 10 2.3.1 奈米纖維 10 2.3.2 奈米複合材料 12 2.4 醋酸纖維素(CA) 14 2.5 奈米粒子 16 2.5.1 銀奈米粒子(AgNPs) 16 2.5.2 抗菌機制 17 第三章 材料與實驗方法 21 3.1 材料 21 3.1.1 細菌與細胞 21 3.1.2 藥品 21 3.2 細菌培養基 21 3.2.1 Lysogeny Broth(LB) 培養基: 用於培養大腸桿菌(E. coli) 21 3.2.2 Tryptone Soy Broth(TSB) 培養基: 用於培養金黃色葡萄球菌(S. aureus) 22 3.3 試劑 22 3.3.1 磷酸緩衝溶液(PB buffer 0.1 M, pH 7.4): 用於單寧酸釋放行為之環境 22 3.3.1 磷酸鹽緩衝溶液(PBS buffer 0.1 M, pH 7.4): 用於洗滌細胞及收集測試 22 3.4 儀器 22 3.5 實驗步驟 24 3.5.1 製備溶液(CA, CA/TA, CA/TA-ZrIV) 24 3.5.2 靜電紡絲製備纖維 24 3.5.3 CA/TA-ZrIV纖維墊之表面修飾(CA/TA-ZrIV-Ag) 25 3.6 材料物化分析 25 3.6.1 萬能材料試驗機 25 3.6.2 進階式熱重分析儀(TGA) 26 3.6.3 場發射掃描式電子顯微鏡(FE-SEM) 26 3.6.4 X光衍射分析儀(XRD) 28 3.6.5 傅立葉轉換紅外線光譜分析儀 (FTIR) 28 3.6.6 微電腦數字型錐板式黏度計(Viscometer) 28 3.6.7 固體表面ζ電位分析儀(Zeta potential) 29 3.6.8 單寧酸(TA) 釋放行為測試 29 3.6.9 親水性之測試(WCA) 31 3.6.10 抗氧化活性之評估方法 31 3.6.11 抗菌能力之測定 31 3.6.12 生物相容性測試 34 第四章 結果與討論 35 4.1 表面型態分析 35 4.1.1 場發射掃描式電子顯微鏡分析(FE-SEM) 35 4.1.2 液體黏度分析 39 4.1.3 傅立葉轉換紅外線光譜(FTIR)分析 40 4.1.4 機械強度和力學行為測試 41 4.2 檢測TA於水中釋放量 43 4.3 抗氧化活性測定 45 4.4 CA/TA-ZrIV-AgNPs之表面型態分析 47 4.4.1 場發射掃描式電子顯微鏡分析(FE-SEM) 47 4.4.2 X射線衍射分析(XRD) 49 4.4.3 熱穩定性分析(TGA) 50 4.4.4 固體表面ζ電位分析(Zeta potential) 52 4.4.5 親水性測試(WCA) 54 4.5 體外抗菌能力之測定 56 4.5.1 菌落形成單位(CFU) 56 4.5.2 奈米纖維之CFU結果 56 4.6 生物相容性之測定 62 第五章 結論 64 參考文獻 65 補充資料 80

Abbaszadegan, A., Ghahramani, Y., Gholami, A., Hemmateenejad, B., Dorostkar, S., Nabavizadeh, M., & Sharghi, H. (2015). The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. Journal of Nanomaterials, 16(1), 53-53.
Abedini, R., Mousavi, S. M., & Aminzadeh, R. (2011). A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: preparation, characterization and permeation study. Desalination, 277(1-3), 40-45.
Aguiar, B., Carmo, H., Garrido, J., Sousa Lobo, J. M., & Almeida, I. F. (2021). In vitro evaluation of the photoreactivity and phototoxicity of natural polyphenol antioxidants. Molecules, 27(1), 189.
Ahearn, D., May, L., & Gabriel, M. (1995). Adherence of organisms to silver-coated surfaces. Journal of industrial microbiology and biotechnology, 15(4), 372-376.
Ali, S., Khatri, Z., Oh, K. W., Kim, I.-S., & Kim, S. H. (2014). Zein/cellulose acetate hybrid nanofibers: Electrospinning and characterization. Macromolecular Research, 22, 971-977.
Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271(5251), 933-937.
Allais, M., Mailley, D., Hébraud, P., Ihiawakrim, D., Ball, V., Meyer, F., Hébraud, A., & Schlatter, G. (2018). Polymer-free electrospinning of tannic acid and cross-linking in water for hybrid supramolecular nanofibres. Nanoscale, 10(19), 9164-9173.
Anitha, S., Brabu, B., Thiruvadigal, D. J., Gopalakrishnan, C., & Natarajan, T. (2012). Optical, bactericidal and water repellent properties of electrospun nanocomposite membranes of cellulose acetate and ZnO. Carbohydrate polymers, 87(2), 1065-1072.
Ansari, M. A., Khan, H. M., Khan, A. A., Ahmad, M. K., Mahdi, A. A., Pal, R., & Cameotra, S. S. (2014). Interaction of silver nanoparticles with Escherichia coli and their cell envelope biomolecules. Journal of basic microbiology, 54(9), 905-915.
Bao, Q., Zhang, D., & Qi, P. (2011). Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. Journal of colloid and interface science, 360(2), 463-470.
Beaucage, G. (2012). Polymer science: a comprehensive reference. Elsevier BV: Amsterdam, 399-409.
Belhaoues, S., Amri, S., & Bensouilah, M. (2020). Major phenolic compounds, antioxidant and antibacterial activities of Anthemis praecox Link aerial parts. South African Journal of Botany, 131, 200-205.
Bergshoef, M. M., & Vancso, G. J. (1999). Transparent nanocomposites with ultrathin, electrospun nylon‐4, 6 fiber reinforcement. Advanced Materials, 11(16), 1362-1365.
Bhopal, R. (2010). Investigation of water vapour permeation and antibacterial properties of nano silver loaded cellulose acetate film. Int. Food Res. J, 17, 623-639.
Biel, M. A., Sievert, C., Usacheva, M., Teichert, M., & Balcom, J. (2011). Antimicrobial photodynamic therapy treatment of chronic recurrent sinusitis biofilms. International forum of allergy & rhinology,
Bouki, E., Dimitriadis, V. K., Kaloyianni, M., & Dailianis, S. (2013). Antioxidant and pro-oxidant challenge of tannic acid in mussel hemocytes exposed to cadmium. Marine environmental research, 85, 13-20.
Božič, M., Gorgieva, S., & Kokol, V. (2012). Homogeneous and heterogeneous methods for laccase-mediated functionalization of chitosan by tannic acid and quercetin. Carbohydrate polymers, 89(3), 854-864.
Bragg, P., & Rainnie, D. (1974). The effect of silver ions on the respiratory chain of Escherichia coli. Canadian journal of microbiology, 20(6), 883-889.
Burger, C., Hsiao, B. S., & Chu, B. (2006). Nanofibrous materials and their applications. Annu. Rev. Mater. Res., 36, 333-368.
Cao, J., Xiaolong, M., Yang, A., & Xu, W. (2006). Preparation of cellulose acetate/nano-SiO2 composites and their application in filtration of cigarette smoke. Polymers and Polymer Composites, 14(1), 65-71.
Celik, B., Lee, J., & Min, D. (2003). Effects of light, oxygen and pH on the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method to evaluate antioxidants. J. Food Sci, 68, 487-490.
Chand, S. (2000). Review carbon fibers for composites. Journal of materials science, 35, 1303-1313.
Chauhan, D., & Solanki, P. R. (2019). Hydrophilic and insoluble electrospun cellulose acetate fiber-based biosensing platform for 25-hydroxy vitamin-D3 detection. ACS Applied Polymer Materials, 1(7), 1613-1623.
Chen, W., Su, Y., Zhang, L., Shi, Q., Peng, J., & Jiang, Z. (2010). In situ generated silica nanoparticles as pore-forming agent for enhanced permeability of cellulose acetate membranes. Journal of membrane science, 348(1-2), 75-83.
Cheng, H., Dowd, M. K., Selling, G., & Biswas, A. (2010). Synthesis of cellulose acetate from cotton byproducts. Carbohydrate polymers, 80(2), 449-452.
Cheng, L., Li, R., Liu, G., Zhang, Y., Tang, X., Wang, J., Liu, H., & Qin, Y. (2018). Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. International journal of nanomedicine, 13, 3311.
Choi, O., & Hu, Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental science & technology, 42(12), 4583-4588.
Chukwuma, I. F., Nworah, F. N., Apeh, V. O., Omeje, K. O., Nweze, E. J., Asogwa, C. D., & Ezeorba, T. P. C. (2022). Phytochemical characterization, functional nutrition, and anti-diabetic potentials of Leptadenia hastata (pers) decne leaves: in silico and in vitro studies. Bioinformatics and Biology Insights, 16, 11779322221115436.
Dabbaghi, A., Kabiri, K., Ramazani, A., Zohuriaan‐Mehr, M. J., & Jahandideh, A. (2019). Synthesis of bio‐based internal and external cross‐linkers based on tannic acid for preparation of antibacterial superabsorbents. Polymers for Advanced Technologies, 30(11), 2894-2905.
Dai, Q., Geng, H., Yu, Q., Hao, J., & Cui, J. (2019). Polyphenol-based particles for theranostics. Theranostics, 9(11), 3170.
Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in microbiology, 7, 1831.
Darder, M., Aranda, P., & Ruiz‐Hitzky, E. (2007). Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Advanced Materials, 19(10), 1309-1319.
Dibrov, P., Dzioba, J., Gosink, K. K., & Häse, C. C. (2002). Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrobial agents and chemotherapy, 46(8), 2668-2670.
Dobrovolskaia, M. A., & McNeil, S. E. (2016). Handbook Of Immunological Properties Of Engineered Nanomaterials (In 3 Volumes) (Vol. 6). World Scientific.
Donlan, R. M., & Costerton, J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews, 15(2), 167-193.
Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of electrostatics, 35(2-3), 151-160.
Durazzo, A., Lucarini, M., Souto, E. B., Cicala, C., Caiazzo, E., Izzo, A. A., Novellino, E., & Santini, A. (2019). Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytotherapy Research, 33(9), 2221-2243.
Edgar, K. J., Buchanan, C. M., Debenham, J. S., Rundquist, P. A., Seiler, B. D., Shelton, M. C., & Tindall, D. (2001). Advances in cellulose ester performance and application. Progress in polymer science, 26(9), 1605-1688.
Ejima, H., Richardson, J. J., & Caruso, F. (2014). Phenolic film engineering for template-mediated microcapsule preparation. Polymer journal, 46(8), 452-459.
Ejima, H., Richardson, J. J., & Caruso, F. (2017). Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces. Nano Today, 12, 136-148.
Ejima, H., Richardson, J. J., Liang, K., Best, J. P., van Koeverden, M. P., Such, G. K., Cui, J., & Caruso, F. (2013). One-step assembly of coordination complexes for versatile film and particle engineering. Science, 341(6142), 154-157.
Fan, G., Wang, M., Liao, C., Fang, T., Li, J., & Zhou, R. (2013). Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid. Carbohydrate polymers, 94(1), 71-76.
Feng, Q. L., Wu, J., Chen, G. Q., Cui, F., Kim, T., & Kim, J. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research, 52(4), 662-668.
Fenoglio, I., Corazzari, I., Francia, C., Bodoardo, S., & Fubini, B. (2008). The oxidation of glutathione by cobalt/tungsten carbide contributes to hard metal-induced oxidative stress. Free radical research, 42(8), 437-745.
Fernandes, E. M., Correlo, V. M., Mano, J. F., & Reis, R. L. (2013). Novel cork–polymer composites reinforced with short natural coconut fibres: Effect of fibre loading and coupling agent addition. Composites science and technology, 78, 56-62.
Foldbjerg, R., Olesen, P., Hougaard, M., Dang, D. A., Hoffmann, H. J., & Autrup, H. (2009). PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicology letters, 190(2), 156-162.
Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20(5), 8856-8874.
Frenot, A., & Chronakis, I. S. (2003). Polymer nanofibers assembled by electrospinning. Current opinion in colloid & interface science, 8(1), 64-75.
Gülçin, İ., Huyut, Z., Elmastaş, M., & Aboul-Enein, H. Y. (2010). Radical scavenging and antioxidant activity of tannic acid. Arabian journal of chemistry, 3(1), 43-53.
Gaikwad, A., Hlushko, H., Karimineghlani, P., Selin, V., & Sukhishvili, S. A. (2020). Hydrogen-bonded, mechanically strong nanofibers with tunable antioxidant activity. ACS Applied Materials & Interfaces, 12(9), 11026-11035.
Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X., & Xing, M. M. (2014). Nanosilver particles in medical applications: synthesis, performance, and toxicity. International journal of nanomedicine, 2399-2407.
Getachew, G., Pittroff, W., Putnam, D., Dandekar, A., Goyal, S., & DePeters, E. (2008). The influence of addition of gallic acid, tannic acid, or quebracho tannins to alfalfa hay on in vitro rumen fermentation and microbial protein synthesis. Animal feed science and technology, 140(3-4), 444-461.
Gholami, A., Moghadassi, A., Hosseini, S., Shabani, S., & Gholami, F. (2014). Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration-membrane modified by iron oxide nanoparticles for lead removal from water. Journal of Industrial and Engineering Chemistry, 20(4), 1517-1522.
Ghosh, S., Patil, S., Ahire, M., Kitture, R., Kale, S., Pardesi, K., Cameotra, S. S., Bellare, J., Dhavale, D. D., & Jabgunde, A. (2012). Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. International journal of nanomedicine, 483-496.
Golizadeh, M., Karimi, A., Gandomi-Ravandi, S., Vossoughi, M., Khafaji, M., Joghataei, M. T., & Faghihi, F. (2019). Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers. Carbohydrate polymers, 207, 796-805.
Gorup, L. F., Longo, E., Leite, E. R., & Camargo, E. R. (2011). Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method. Journal of colloid and interface science, 360(2), 355-358.
Granbohm, H., Larismaa, J., Ali, S., Johansson, L.-S., & Hannula, S.-P. (2018). Control of the size of silver nanoparticles and release of silver in heat treated SiO2-Ag composite powders. Materials, 11(1), 80.
Guo, J., Ping, Y., Ejima, H., Alt, K., Meissner, M., Richardson, J. J., Yan, Y., Peter, K., Von Elverfeldt, D., & Hagemeyer, C. E. (2014). Engineering multifunctional capsules through the assembly of metal–phenolic networks. Angewandte Chemie International Edition, 53(22), 5546-5551.
Guo, J., Sun, W., Kim, J. P., Lu, X., Li, Q., Lin, M., Mrowczynski, O., Rizk, E. B., Cheng, J., & Qian, G. (2018). Development of tannin-inspired antimicrobial bioadhesives. Acta biomaterialia, 72, 35-44.
Guo, Z., Xie, W., Lu, J., Guo, X., Xu, J., Xu, W., Chi, Y., Takuya, N., Wu, H., & Zhao, L. (2021). Tannic acid-based metal phenolic networks for bio-applications: A review. Journal of Materials Chemistry B, 9(20), 4098-4110.
Hatchett, D. W., & White, H. S. (1996). Electrochemistry of sulfur adlayers on the low-index faces of silver. The Journal of Physical Chemistry, 100(23), 9854-9859.
Hirano, S. (2009). A current overview of health effect research on nanoparticles. Environmental health and preventive medicine, 14(4), 223-225.
Holt, K. B., & Bard, A. J. (2005). Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry, 44(39), 13214-13223.
Huang, M., Lu, J.-J., & Ding, J. (2021). Natural products in cancer therapy: Past, present and future. Natural products and bioprospecting, 11, 5-13.
Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 63(15), 2223-2253.
Ibrahim, M. M., Dufresne, A., El-Zawawy, W. K., & Agblevor, F. A. (2010). Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydrate polymers, 81(4), 811-819.
Jana, S., & Pal, T. (2007). Synthesis, characterization and catalytic application of silver nanoshell coated functionalized polystyrene beads. Journal of nanoscience and nanotechnology, 7(6), 2151-2156.
Jia, Z., Xiu, P., Li, M., Xu, X., Shi, Y., Cheng, Y., Wei, S., Zheng, Y., Xi, T., & Cai, H. (2016). Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials, 75, 203-222.
Köhler, A. R., Som, C., Helland, A., & Gottschalk, F. (2008). Studying the potential release of carbon nanotubes throughout the application life cycle. Journal of Cleaner Production, 16(8-9), 927-937.
Kaczmarek, B. (2020). Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials—A minireview. Materials, 13(14), 3224.
Kalsoom Khan, A., Saba, A. U., Nawazish, S., Akhtar, F., Rashid, R., Mir, S., Nasir, B., Iqbal, F., Afzal, S., & Pervaiz, F. (2017). Carrageenan based bionanocomposites as drug delivery tool with special emphasis on the influence of ferromagnetic nanoparticles. Oxidative medicine and cellular longevity, 2017.
Kamal, T., Ul-Islam, M., Khan, S. B., & Asiri, A. M. (2015). Adsorption and photocatalyst assisted dye removal and bactericidal performance of ZnO/chitosan coating layer. International journal of biological macromolecules, 81, 584-590.
Khan, S. B., Lee, J.-W., Marwani, H. M., Akhtar, K., Asiri, A. M., Seo, J., Khan, A. A. P., & Han, H. (2014). Polybenzimidazole hybrid membranes as a selective adsorbent of mercury. Composites Part B: Engineering, 56, 392-396.
Khoshnevisan, K., Maleki, H., Samadian, H., Shahsavari, S., Sarrafzadeh, M. H., Larijani, B., Dorkoosh, F. A., Haghpanah, V., & Khorramizadeh, M. R. (2018). Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances. Carbohydrate polymers, 198, 131-141.
Kim, D., Jang, M., Seo, J., Nam, K.-H., Han, H., & Khan, S. B. (2013). UV-cured poly (urethane acrylate) composite films containing surface-modified tetrapod ZnO whiskers. Composites science and technology, 75, 84-92.
Kim, J. S., Kuk, E., Yu, K. N., Kim, J.-H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., & Hwang, C.-Y. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, biology and medicine, 3(1), 95-101.
Kim, J. s., & Reneker, D. H. (1999). Mechanical properties of composites using ultrafine electrospun fibers. Polymer composites, 20(1), 124-131.
Kim, T., Silva, J., Kim, M., & Jung, Y. (2010). Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing. Food Chemistry, 118(3), 740-746.
Kim, W.-g., Lee, J. S., Bucknall, D. G., Koros, W. J., & Nair, S. (2013). Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations. Journal of membrane science, 441, 129-136.
Klueh, U., Wagner, V., Kelly, S., Johnson, A., & Bryers, J. (2000). Efficacy of silver‐coated fabric to prevent bacterial colonization and subsequent device‐based biofilm formation. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 53(6), 621-631.
Ko, M.-P., & Huang, C.-J. (2020). A versatile approach to antimicrobial coatings via metal-phenolic networks. Colloids and Surfaces B: Biointerfaces, 187, 110771.
Kochkodan, V., & Hilal, N. (2015). A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination, 356, 187-207.
Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, e00370.
Lara, H. H., Garza-Treviño, E. N., Ixtepan-Turrent, L., & Singh, D. K. (2011). Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. Journal of nanobiotechnology, 9, 1-8.
Lee, S. J., Gwak, M. A., Chathuranga, K., Lee, J. S., Koo, J., & Park, W. H. (2023). Multifunctional chitosan/tannic acid composite films with improved anti-UV, antioxidant, and antimicrobial properties for active food packaging. Food Hydrocolloids, 136, 108249.
Lee, S. Y., Kim, J. T., Chathuranga, K., Lee, J. S., Park, S. W., & Park, W. H. (2023). Tannic-Acid-Enriched Poly (vinyl alcohol) Nanofibrous Membrane as a UV-Shie lding and Antibacterial Face Mask Filter Material. ACS Applied Materials & Interfaces, 15(16), 20435-20443.
Lee, Y., Kim, D., Seo, J., Han, H., & Khan, S. B. (2013). Preparation and characterization of poly (propylene carbonate)/exfoliated graphite nanocomposite films with improved thermal stability, mechanical properties and barrier properties. Polymer International, 62(9), 1386-1394.
Li, D., Babel, A., Jenekhe, S. A., & Xia, Y. (2004). Nanofibers of conjugated polymers prepared by electrospinning with a two‐capillary spinneret. Advanced Materials, 16(22), 2062-2066.
Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water research, 42(18), 4591-4602.
Li, W.-R., Xie, X.-B., Shi, Q.-S., Duan, S.-S., Ouyang, Y.-S., & Chen, Y.-B. (2011). Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 24, 135-141.
Li, Y., Miao, Y., Yang, L., Zhao, Y., Wu, K., Lu, Z., Hu, Z., & Guo, J. (2022). Recent Advances in the Development and Antimicrobial Applications of Metal–Phenolic Networks. Advanced Science, 9(27), 2202684.
Lin, G., Rahim, M. A., Leeming, M. G., Cortez-Jugo, C., Besford, Q. A., Ju, Y., Zhong, Q.-Z., Johnston, S. T., Zhou, J., & Caruso, F. (2019). Selective metal–phenolic assembly from complex multicomponent mixtures. ACS Applied Materials & Interfaces, 11(19), 17714-17721.
Liu, H., & Tang, C. (2007). Electrospinning of cellulose acetate in solvent mixture N, N-dimethylacetamide (DMAc)/acetone. Polymer journal, 39(1), 65-72.
Liu, J., & Hurt, R. H. (2010). Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environmental science & technology, 44(6), 2169-2175.
Lok, C.-N., Ho, C.-M., Chen, R., He, Q.-Y., Yu, W.-Y., Sun, H., Tam, P. K.-H., Chiu, J.-F., & Che, C.-M. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of proteome research, 5(4), 916-924.
Lombi, E., & Voelcker, N. H. (2016). Quantitative multimodal analyses of silver nanoparticle-cell interactions: Implications for cytotoxicity.
Lu, Z., Meng, M., Jiang, Y., & Xie, J. (2014). UV-assisted in situ synthesis of silver nanoparticles on silk fibers for antibacterial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 447, 1-7.
Lu, Z., Xiao, J., Wang, Y., & Meng, M. (2015). In situ synthesis of silver nanoparticles uniformly distributed on polydopamine-coated silk fibers for antibacterial application. Journal of colloid and interface science, 452, 8-14.
Luong, N. D., Lee, Y., & Nam, J.-D. (2008). Highly-loaded silver nanoparticles in ultrafine cellulose acetate nanofibrillar aerogel. European Polymer Journal, 44(10), 3116-3121.
Ma, Z., Kotaki, M., & Ramakrishna, S. (2005). Electrospun cellulose nanofiber as affinity membrane. Journal of membrane science, 265(1-2), 115-123.
MacDiarmid, A., Jones Jr, W., Norris, I., Gao, J., Johnson Jr, A., Pinto, N., Hone, J., Han, B., Ko, F., & Okuzaki, H. (2001). Electrostatically-generated nanofibers of electronic polymers. Synthetic metals, 119(1-3), 27-30.
Mahal, H. S., Kapoor, S., Satpati, A. K., & Mukherjee, T. (2005). Radical scavenging and catalytic activity of metal− phenolic complexes. The Journal of Physical Chemistry B, 109(50), 24197-24202.
Manikprabhu, D., & Lingappa, K. (2013). Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method. journal of pharmacy research, 6(2), 255-260.
Mao, C., Qu, Y., Wang, J., Xu, R., Huang, J., & Yin, H.-M. (2022). Strengthening and toughening energetic polymer composites via assembly of metal-phenolic network. Composites science and technology, 226, 109546.
Mazo, N. A., Echeverria, V., Cabezas, R., Avila-Rodriguez, M., Tarasov, V. V., Yarla, N. S., Aliev, G., & Barreto, G. E. (2017). Medicinal plants as protective strategies against Parkinson's disease. Current Pharmaceutical Design, 23(28), 4180-4188.
Meng, X., Perry, S. L., & Schiffman, J. D. (2017). Complex coacervation: Chemically stable fibers electrospun from aqueous polyelectrolyte solutions. ACS Macro Letters, 6(5), 505-511.
Mijakovic, I., Petranovic, D., Macek, B., Cepo, T., Mann, M., Davies, J., Jensen, P. R., & Vujaklija, D. (2006). Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic acids research, 34(5), 1588-1596.
Mondal, S. (2015). Polymer nanocomposite membranes. J. Membr. Sci. Technol, 5(01), 5-6.
Monteiro, D. R., Gorup, L. F., Takamiya, A. S., de Camargo, E. R., Filho, A. C. R., & Barbosa, D. B. (2012). Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry, 21(1), 7-15.
Naghsh, M., Sadeghi, M., Moheb, A., Chenar, M. P., & Mohagheghian, M. (2012). Separation of ethylene/ethane and propylene/propane by cellulose acetate–silica nanocomposite membranes. Journal of membrane science, 423, 97-106.
Nata, I. F., Chen, K.-J., & Lee, C.-K. (2014). Facile microencapsulation of curcumin in acetylated starch microparticles. Journal of microencapsulation, 31(4), 344-349.
Nigmatullin, R., Lovitt, R., Wright, C., Linder, M., Nakari-Setälä, T., & Gama, M. (2004). Atomic force microscopy study of cellulose surface interaction controlled by cellulose binding domains. Colloids and Surfaces B: Biointerfaces, 35(2), 125-135.
Okagu, I. U., Ezeorba, T. P., Aguchem, R. N., Ohanenye, I. C., Aham, E. C., Okafor, S. N., Bollati, C., & Lammi, C. (2022). A review on the molecular mechanisms of action of natural products in preventing bone diseases. International journal of molecular sciences, 23(15), 8468.
Okagu, I. U., Ezeorba, T. P., Aham, E. C., Aguchem, R. N., & Nechi, R. N. (2022). Recent findings on the cellular and molecular mechanisms of action of novel food-derived antihypertensive peptides. Food Chemistry: Molecular Sciences, 4, 100078.
Okpala, C. C. (2013). Nanocomposites–an overview. International Journal of Engineering Research and Development, 8(11), 17-23.
OPREA, M., FICAI, A., ILIE, C., TRUȘCĂ, R., OPREA, O. C., ȘERBĂNESCU, O. S., & VOICU, Ș. I. ZINC-LOADED CELLULOSE ACETATE MEMBRANES WITH POTENTIAL BIOMEDICAL APPLICATIONS.
Pandey, A., & Negi, P. S. (2018). Phytochemical composition, in vitro antioxidant activity and antibacterial mechanisms of Neolamarckia cadamba fruits extracts. Natural product research, 32(10), 1189-1192.
Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: nanocomposites. Polymer, 49(15), 3187-3204.
Phiwchai, I., Yuensook, W., Sawaengsiriphon, N., Krungchanuchat, S., & Pilapong, C. (2018). Tannic acid (TA): A molecular tool for chelating and imaging labile iron. European Journal of Pharmaceutical Sciences, 114, 64-73.
Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K., & Thangamani, S. (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific journal of tropical biomedicine, 2(7), 574-580.
Rahim, M. A., Lin, G., Tomanin, P. P., Ju, Y., Barlow, A., Björnmalm, M., & Caruso, F. (2020). Self-assembly of a metal–phenolic sorbent for broad-spectrum metal sequestration. ACS Applied Materials & Interfaces, 12(3), 3746-3754.
Rahman, K. (2007). Studies on free radicals, antioxidants, and co-factors. Clinical interventions in aging, 2(2), 219-236.
Rai, M. K., Deshmukh, S., Ingle, A., & Gade, A. (2012). Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria. Journal of applied microbiology, 112(5), 841-852.
Rajesh, S., Dharanishanthi, V., & Kanna, A. V. (2015). Antibacterial mechanism of biogenic silver nanoparticles of Lactobacillus acidophilus. Journal of Experimental Nanoscience, 10(15), 1143-1152.
Ramakrishna, S. (2005). An introduction to electrospinning and nanofibers. World scientific.
Ramalingam, B., Parandhaman, T., & Das, S. K. (2016). Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials & Interfaces, 8(7), 4963-4976.
Reidy, B., Haase, A., Luch, A., Dawson, K. A., & Lynch, I. (2013). Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials, 6(6), 2295-2350.
Richardson, J. J., Liao, W., Li, J., Cheng, B., Wang, C., Maruyama, T., Tardy, B. L., Guo, J., Zhao, L., & Aw, W. (2022). Rapid assembly of colorless antimicrobial and anti-odor coatings from polyphenols and silver. Scientific Reports, 12(1), 2071.
Rinna, A., Magdolenova, Z., Hudecova, A., Kruszewski, M., Refsnes, M., & Dusinska, M. (2015). Effect of silver nanoparticles on mitogen-activated protein kinases activation: role of reactive oxygen species and implication in DNA damage. Mutagenesis, 30(1), 59-66.
Rivero, S., Garcia, M. A., & Pinotti, A. (2010). Crosslinking capacity of tannic acid in plasticized chitosan films. Carbohydrate polymers, 82(2), 270-276.
Ryter, S. W., Kim, H. P., Hoetzel, A., Park, J. W., Nakahira, K., Wang, X., & Choi, A. M. (2007). Mechanisms of cell death in oxidative stress. Antioxidants & redox signaling, 9(1), 49-89.
Sagbas, S., Aktas, N., & Sahiner, N. (2015). Modified biofunctional p (tannic acid) microgels and their antimicrobial activity. Applied Surface Science, 354, 306-313.
Sahiner, N., Sagbas, S., & Aktas, N. (2016). Preparation of macro-, micro-, and nano-sized poly (Tannic acid) particles with controllable degradability and multiple biomedical uses. Polymer degradation and stability, 129, 96-105.
Sahoo, S. K., Dilnawaz, F., & Krishnakumar, S. (2008). Nanotechnology in ocular drug delivery. Drug discovery today, 13(3-4), 144-151.
Salminen, J. P., & Karonen, M. (2011). Chemical ecology of tannins and other phenolics: we need a change in approach. Functional ecology, 25(2), 325-338.
Schreurs, W., & Rosenberg, H. (1982). Effect of silver ions on transport and retention of phosphate by Escherichia coli. Journal of bacteriology, 152(1), 7-13.
Selin, V., Aliakseyeu, A., Ankner, J. F., & Sukhishvili, S. A. (2019). Effect of a competitive solvent on binding enthalpy and chain intermixing in hydrogen-bonded layer-by-layer films. Macromolecules, 52(12), 4432-4440.
Shao, H., Zhang, Y., Pan, H., Jiang, Y., Qi, J., Xiao, H., Zhang, S., Lin, T., Tu, L., & Xie, J. (2022). Preparation of flexible and UV-blocking films from lignin-containing cellulose incorporated with tea polyphenol/citric acid. International journal of biological macromolecules, 207, 917-926.
Shen, H., Duan, C., Guo, J., Zhao, N., & Xu, J. (2015). Facile in situ synthesis of silver nanoparticles on boron nitride nanosheets with enhanced catalytic performance. Journal of Materials Chemistry A, 3(32), 16663-16669.
Shirmohammadli, Y., Efhamisisi, D., & Pizzi, A. (2018). Tannins as a sustainable raw material for green chemistry: A review. Industrial Crops and Products, 126, 316-332.
Sileika, T. S., Barrett, D. G., Zhang, R., Lau, K. H. A., & Messersmith, P. B. (2013). Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angewandte Chemie, 125(41), 10966-10970.
Silver, S., & Phung, L. T. (1996). Bacterial heavy metal resistance: new surprises. Annual review of microbiology, 50(1), 753-789.
Singh, N., Manshian, B., Jenkins, G. J., Griffiths, S. M., Williams, P. M., Maffeis, T. G., Wright, C. J., & Doak, S. H. (2009). NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials, 30(23-24), 3891-3914.
Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International journal of molecular sciences, 16(10), 24673-24706.
Soare, J. R., Dinis, T. C., Cunha, A. P., & Almeida, L. (1997). Antioxidant activities of some extracts of Thymus zygis. Free radical research, 26(5), 469-478.
Son, W. K., Youk, J. H., Lee, T. S., & Park, W. H. (2004). Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. Journal of Polymer Science Part B: Polymer Physics, 42(1), 5-11.
Son, W. K., Youk, J. H., & Park, W. H. (2006). Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydrate polymers, 65(4), 430-434.
Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science, 275(1), 177-182.
Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of applied polymer science, 96(2), 557-569.
Sun, B., Long, Y., Zhang, H., Li, M., Duvail, J., Jiang, X., & Yin, H. (2014). Advances in three-dimensional nanofibrous macrostructures via electrospinning. Progress in polymer science, 39(5), 862-890.
Suwantong, O., Opanasopit, P., Ruktanonchai, U., & Supaphol, P. (2007). Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer, 48(26), 7546-7557.
Tolaymat, T. M., El Badawy, A. M., Genaidy, A., Scheckel, K. G., Luxton, T. P., & Suidan, M. (2010). An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Science of the total environment, 408(5), 999-1006.
Trevors, J. (1987). Silver resistance and accumulation in bacteria. Enzyme and Microbial Technology, 9(6), 331-333.
Tsioptsias, C., Sakellariou, K. G., Tsivintzelis, I., Papadopoulou, L., & Panayiotou, C. (2010). Preparation and characterization of cellulose acetate–Fe2O3 composite nanofibrous materials. Carbohydrate polymers, 81(4), 925-930.
Tungprapa, S., Puangparn, T., Weerasombut, M., Jangchud, I., Fakum, P., Semongkhol, S., Meechaisue, C., & Supaphol, P. (2007). Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose, 14, 563-575.
Uyama, H. (2007). Artificial polymeric flavonoids: synthesis and applications. Macromolecular bioscience, 7(4), 410-422.
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology, 39(1), 44-84.
Vallejos, M. E., Peresin, M. S., & Rojas, O. J. (2012). All-cellulose composite fibers obtained by electrospinning dispersions of cellulose acetate and cellulose nanocrystals. Journal of Polymers and the Environment, 20, 1075-1083.
Vallyathan, V., & Shi, X. (1997). The role of oxygen free radicals in occupational and environmental lung diseases. Environmental Health Perspectives, 105(suppl 1), 165-177.
Vatanpour, V., Pasaoglu, M. E., Barzegar, H., Teber, O. O., Kaya, R., Bastug, M., Khataee, A., & Koyuncu, I. (2022). Cellulose acetate in fabrication of polymeric membranes: A review. Chemosphere, 295, 133914.
Wongsasulak, S., Patapeejumruswong, M., Weiss, J., Supaphol, P., & Yoovidhya, T. (2010). Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. Journal of Food Engineering, 98(3), 370-376.
Wu, C.-S. (2014). Mechanical properties, biocompatibility, and biodegradation of cross-linked cellulose acetate-reinforced polyester composites. Carbohydrate polymers, 105, 41-48.
Xia, Z., Singh, A., Kiratitanavit, W., Mosurkal, R., Kumar, J., & Nagarajan, R. (2015). Unraveling the mechanism of thermal and thermo-oxidative degradation of tannic acid. Thermochimica acta, 605, 77-85.
Xie, H., Shen, L., Xu, Y., Hong, H., Yang, L., Li, R., & Lin, H. (2022). Tannic acid (TA)-based coating modified membrane enhanced by successive inkjet printing of Fe3+ and sodium periodate (SP) for efficient oil-water separation. Journal of membrane science, 660, 120873.
Xiong, R., Grant, A. M., Ma, R., Zhang, S., & Tsukruk, V. V. (2018). Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering: R: Reports, 125, 1-41.
Xiu, Z.-m., Zhang, Q.-b., Puppala, H. L., Colvin, V. L., & Alvarez, P. J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano letters, 12(8), 4271-4275.
Xu, H., Qu, F., Xu, H., Lai, W., Andrew Wang, Y., Aguilar, Z. P., & Wei, H. (2012). Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157: H7. Biometals, 25, 45-53.
Xu, Z., Li, M., Li, X., Liu, X., Ma, F., Wu, S., Yeung, K., Han, Y., & Chu, P. K. (2016). Antibacterial activity of silver doped titanate nanowires on Ti implants. ACS Applied Materials & Interfaces, 8(26), 16584-16594.
Xue, J., Xie, J., Liu, W., & Xia, Y. (2017). Electrospun nanofibers: new concepts, materials, and applications. Accounts of chemical research, 50(8), 1976-1987.
Yamanaka, M., Hara, K., & Kudo, J. (2005). Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Applied and environmental microbiology, 71(11), 7589-7593.
Yang, C. M., Chathuranga, K., Lee, J. S., & Park, W. H. (2022). Effects of polyphenols on the thermal decomposition, antioxidative, and antimicrobial properties of poly (vinyl alcohol) and poly (vinyl pyrrolidone). Polymer Testing, 116, 107786.
Yang, C. M., Lee, J., Lee, H., & Park, W. H. (2022). ZnO nanoparticle-embedded modified silk fibroin-tannin multifunctional hydrogel. International journal of biological macromolecules, 210, 1-10.
Yang, W., Sousa, A. M., Fan, X., Jin, T., Li, X., Tomasula, P. M., & Liu, L. (2017). Electrospun ultra-fine cellulose acetate fibrous mats containing tannic acid-Fe3+ complexes. Carbohydrate polymers, 157, 1173-1179.
Yun, G., Richardson, J. J., Biviano, M., & Caruso, F. (2019). Tuning the mechanical behavior of metal–phenolic networks through building block composition. ACS Applied Materials & Interfaces, 11(6), 6404-6410.
Zhan, F., Yan, X., Sheng, F., & Li, B. (2020). Facile in situ synthesis of silver nanoparticles on tannic acid/zein electrospun membranes and their antibacterial, catalytic and antioxidant activities. Food Chemistry, 330, 127172.
Zhang, H., & Edirisinghe, M. (2006). Electrospinning zirconia fiber from a suspension. Journal of the American Ceramic Society, 89(6), 1870-1875.
Zhang, Y., Feng, Y., Huang, Z., Ramakrishna, S., & Lim, C. (2006). Fabrication of porous electrospun nanofibres. Nanotechnology, 17(3), 901.
Zhang, Y., Lim, C. T., Ramakrishna, S., & Huang, Z.-M. (2005). Recent development of polymer nanofibers for biomedical and biotechnological applications. Journal of materials science: materials in medicine, 16, 933-946.
Zhang, Y., Su, Y., Peng, J., Zhao, X., Liu, J., Zhao, J., & Jiang, Z. (2013). Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride. Journal of membrane science, 429, 235-242.
Zhang, Y., Wang, X., Feng, Y., Li, J., Lim, C., & Ramakrishna, S. (2006). Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly (ε-caprolactone) nanofibers for sustained release. Biomacromolecules, 7(4), 1049-1057.
Zou, L., Shao, P., Zhang, K., Yang, L., You, D., Shi, H., Pavlostathis, S. G., Lai, W., Liang, D., & Luo, X. (2019). Tannic acid-based adsorbent with superior selectivity for lead (II) capture: Adsorption site and selective mechanism. Chemical Engineering Journal, 364, 160-166.

無法下載圖示
全文公開日期 2026/08/21 (校外網路)
全文公開日期 2026/08/21 (國家圖書館:臺灣博碩士論文系統)
QR CODE