簡易檢索 / 詳目顯示

研究生: 吳愛麗
YUANA - ELLY AGUSTIN
論文名稱: 利用生物分子法的高產率表面測量
A BIOMOLECULE-BASED METHOD FOR HIGH THROUGHPUT SURFACE AREA MEASUREMENT
指導教授: 蔡伸隆
Shen-Long Tsai
口試委員: 李振綱
Cheng-Kang Lee
趙 玲
Ling Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 55
中文關鍵詞: 重组多肽纤维素结合结构域银纳米粒子表面面积测量
外文關鍵詞: recombinant peptide, cellulose binding domain, silver nanoparticles, surface area measurement
相關次數: 點閱:226下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於金屬奈米粒子的使用率漸漸增加,了解金屬奈米粒子的特性日漸重要,尤其是其表面區域,所以開發新的檢測方法便成為新的課題。本研究利用基因工程來達到檢測懸浮狀態之奈米粒子的表面之特性。此方法是將一種高選擇性的金屬結合肽將固定在纖維素之基材上,其用來抓取溶液中的金屬奈米粒子,然後再以被融合在金屬結合肽上的綠色螢光蛋白(Green Fluorescence Protein)來觀察螢光密度與奈米顆粒總表面積之關係。這個新的方法提供了快速且具選擇性的方法來檢測溶液中的特定金屬奈米粒子的表面積並且重組模組蛋白十分的穩定且可以儲存在攝氏4度下達六天。


    The increasing utilization of metallic nanoparticles in many areas of human activity has raised some concern to develop an effective and efficient method to understand the nature and characteristic of metallic nanoparticles, especially the surface area of metallic nanoparticles. In this study, an alternative approach for measuring the surface area of nanoparticles in suspension was studied with the aid of genetic engineering. A selective metal binding peptide that immobilized on a cellulose matrix was used to capture the metal nanoparticles from the solution and the Green Fluorescence Protein (GFP) that fused with metal binding peptide was used to investigate the correlation between fluorescence intensity with the total surface area of the nanoparticles. This newly method provides a fast and selective approach to detect the surface area of target metallic nanoparticles in a mixed solution. The recombinant modular protein quite stabile and can be used until 6 days in the 4oC storage temperature.

    摘要 iv ABSTRACT v ACKNOWLEDGEMENT vi TABLE OF CONTENT vii LIST OF TABLE ix LIST OF FIGURE x CHAPTER 1 12 1.1. Research Background 12 1.2. Objectives 13 CHAPTER 2 14 2.1. Metalic Nanoparticles 14 2.2. Surface Area Measurement 15 2.3. Recombinant Protein Production in Escherichia coli 17 2.4. Matrix for Protein Immobilization 19 2.5. Photosensing Using Green Fluorescence Protein 23 CHAPTER 3 26 3.1. Construction of Silver Binding Peptide 26 3.2. Construction of GFP-Ag4 27 3.3. Growth Media and Chemicals 27 3.4. Biosynthesis of Bacterial Cellulose Pellicles 28 3.5. Synthesis of Silver Nanoparticles 29 3.6. Immobilization of Silver Binding Peptide on Bacterial Cellulose 30 3.7. Analytic Performance 30 3.8. Long Term Storage Stability 31 3.9. Selective Fluorescence Enhancement Toward Over Other Nanoparticles 32 CHAPTER 4 33 4.1. Protein Expression and Purification of Silver Binding Proteins 33 4.2. Immobilization of Recombinant Protein on Bacterial Cellulose 37 4.3. Synthesis of Silver Nanoparticles by Chemical Reduction Process 38 4.4. Maximum Binding of Silver Nanoparticles to Recombinant Modular Protein (Ag4-CBD) onto Bacterial Cellulose Pellicles 40 4.5. Binding Analysis of Ag4-GFP with Silver Nanoparticles 41 4.6. Fluorescence Detection for Surface Area Measurement of Silver Nanoparticles using Ag4-GFP protein 42 4.7. Effect of Long Term Storage to the Stability of Recombinant Modular Protein 44 4.8. Selectivity of Modular Protein toward Nanoparticles 45 CHAPTER 5 47 REFERENCES 48 APPENDIX 51

    1. Aguilera, O., M. F. Fraga., E. Ballestar., M. F. Paz., M. Herranz, and J. Espada. 2006. Epigenetic inactivation of the Wnt antagonist Dickkopf-1 (Dkk-1) gene in human colorectal cancer. Oncogene. Vol 25 : 4116- 4121.
    2. Andersen, D. C and L. Krummen. 2002. Recombinant protein expression for therapeutic applications. Current Opinion in Biotechnology. Vol 13 (2) : 117- 123.
    3. Arola, S., T. Tammelin., H. Setala., A. Tullila, and M. B. Linder. 2012. Immobilization- stabilization of proteins on nanofibrilated cellulose derivatives and their bioactive film formation. Biomacromolecules. Vol 13 (3) : 594- 603.
    4. Atiyeh, B. S., M. Costagliola., S. N. hayek, and S. A. Dibo. 2007. Effect of silver on burn wound infection control and healing review of the leterature. Burns. Vol 33 : 139-148.
    5. Brunauer, S., P. H. Emmett, and E. Teller. 1938. Adsorption of gases in multimolecular layers. Journal of The American Chemical Society. Vol 60 (2) : 309- 319.
    6. Choulier, L, and K. Enander. 2010. Environmentally sensitive fluorescence sensors based on synthetic peptide. Sensors. Vol 10 (4) : 3126- 3144.
    7. Chu, C. S., A. T. Mc. Manus., A. B. Pruitt, and A. D. Mason. 1988. Therapeutic effects of silver nylon dressing with weak direct current on Pseudomonas aeruginosa infected bum wounds. J. Trauma. Vol 28 : 1488- 1492.
    8. Deepak, V., K. Kalishwaralal., S. R. K. Pandian., and S. Gurunathan. 2009. An insight into the bacterial biogenesis of silver nanoparticles industrial production and scale-up.
    9. Deitch, E. A., A. Marin., V. Malakanov, and J. A. Albright. 1987. Silver nylon cloth in vivo and in vitro evaluation of antimicrobial activity. J. Trauma. Vol 27 : 301- 304.
    10. Diaz-Ricci, J.C., L. Regan, and J. E. Bailey. 1991. Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern of Escherichia coli. Biotechnology and Bioengineering. Vol 38 (11) : 1318- 1324.
    11. Errampalli, D., O. Tresse., H. Lee, and J. T. Trevors. 1999. Bacterial survival and mineralization of p-nitrophenol in soil by green fluorescent protein-marked Moraxella sp. G21 encapsulated cells. FEMS Microbiology Ecology. Vol 30 (3) : 229-236.
    12. Fissan, H., C. Asbach., H. Kaminski, and T. A. J. Kuhlbusch. 2012. Total surface area concentration measurements of nanoparticles in gases with an electrical sensor. Chemie Ingenieur Technik. Vol 84 (3) : 365- 372.
    13. Graumann, K, and A. Premstaller. 2006. Biotechnology Journal. Vol 1 (2) : 164- 186.
    14. Gurunathan, S., et al. 2009. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids. Surf. B. Vol 74 (1) : 328- 335.
    15. Huang, C. H., H. Y. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu. 2008. The phase-response effect of size-dependent optical enhancement in a single nanoparticle. Optic Express. Vol 16 (13) : 9580- 9586.
    16. Kalishwaralal, K., V. Deepak., S. Nellaiah, and G. Sangiliyandi. 2008. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater. Letter. Vol 62 : 4411- 4413.
    17. Kostal. J., A. Mulchandani, and W. Chen. 2003. Affinity purification of plasmid DNA by temperture- triggered precipitation. Wiley Inter Science. Available from : http://interscience.wiley.com .
    18. Law, N., S. Ansari, F. R. Livens, J. C. Renshaw, and J. R. Llyod. 2008. The formation of nano-scale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl. Environ. Microbiol. Vol 74 : 7090- 7093.
    19. Lee, E., D. H. Kim., Y. Woo., H. G. Hur, and Y. Lim. 2008. Solution structure of peptide Ag4 used to form silver nanoparticles. Biochemical and Biophysical Research Communications. Vol 376 (3) : 595- 598.
    20. Lofton, C, and W. Sigmund. 2005. Mechanisms controlling crystal habits of gold and silver colloids. Advanced Functional Materials. Vol 15: 1197.
    21. Margraff, H. W, and T. H. Covey. 1977. A trial of silver- zinc- allantoine in the treatment of leg ulcers. Arch Surg. Vol 112 : 699- 704.
    22. Mody, V.V., R. Siwale., A. Singh, and H. R. Mody. 2010. Introduction to metallic nanoparticles. Journal of Pharmacy and BioAllied Science. Vol 2 (4) : 282-289.
    23. Polte, J., et al. 2012. Formation mechanism of colloidal silver nanoparticles : analogies and differences to the growth of gold nanoparticles. ACS Nano. Vol 6 (7) : 5791- 5802.
    24. Sheikpranbabu, S., et al. 2009. Silver nanoparticles inhibit VEGF- and IL-1b induced vascular permeability via Src dependent pathway in procine retinal endothelial cells. J. Nanobiotechnol. Vol 7 : 8.
    25. Shimomura, O., 2005. The discovery of aequorin and green fluorescence protein. Journal of Microscopy. Vol 217 (1) : 3- 15.
    26. Silver, S. 2003. Bacterial silver resistance molecular biology and uses and misuses of silver compounds. FEMS. Microbiol Rev. Vol 27 : 314- 353.
    27. Silver, S., L. T. Phung, and G. Silver. 2006. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J. Ind. Microbiol Biotechnology. Vol 33 : 139- 148.
    28. Skillman, L. C., I. W. Sutherland., M. V. Jones, and A. Goulsbra. 1998. Green fluorescence protein as a novel species- specific marker in enterie dual- species biofilms. Microbiology. Vol 144 (8) : 2095- 2101.
    29. Thiele, G., M. Poston., R. Brown. 2011. A case study in sizing nanoparticles. Micromeritics Analytical Services, MVA Scientific Consultants. Available from : http://particletesting.com .
    30. Wang, J., J. Zhu., C. Min, and S. Wu. 2014. CBD binding domain fused 讪- lactamase from Sulfolobus solfataricus is an efficient catalyst for (-) 讪-lactam production. BMC Biotechnology. Vol 14 (1) : 40-48.
    31. Xi, J., W. Du., L. Zhong, and Drexel. 2008. Probing the interaction between cellulose and cellulase with a nanomechanical sensor.
    32. Yang, F., L. G. Moss, and G. N. Phillips Jr. 1996. The molecular structure of green fluorescent protein. Nature Biotechnology. Vol 14 : 1246- 1251.
    33. Zhijiang, C., H. Chengwei., Y. Guang, and K. Jaehwan. 2012. Bacterial cellulose as a template for formation of polymer/ nanoparticles. Journal of Nanotechnology in Engineering and Medicine. Vol 2 (3) : 31006.
    34. Zhong, L., et al. 2008. Interactions of the complete cellobiohydrolase from Trichodera reesei with microcrystalline cellulose i刍. Cellulose. Vol 15 (2) : 261- 273.

    QR CODE